
Nonlinear Models Over Normalized Data
1st Zhaoyue Cheng Department of Computer Science

University of Toronto
cheng.zhaoyue@mail.utoronto.ca

2nd Nick Koudas Department of Computer Science
University of Toronto

koudas@cs.toronto.edu

Abstract—Machine Learning (ML) applications are prolifer-
ating in the enterprise. Increasingly enterprise data are used
to build sophisticated ML models to assist critical business
functions. Relational data which are prevalent in enterprise
applications are typically normalized; as a result data have to be
denormalized via primary/foreign-key joins to be provided as in-
put to ML algorithms. In this paper we study the implementation
of popular nonlinear ML models and in particular independent
Gaussian Mixture Models (IGMM) over normalized data.

For the case of IGMM we propose algorithms taking the
statistical properties of the Gaussians into account to construct
mixture models, factorizing the computation. In that way we
demonstrate that we can conduct the training of the models
much faster compared to other applicable approaches, without
any loss in accuracy.

We present the results of a thorough experimental evaluation,
varying several parameters of the input relations involved and
demonstrate that our proposals both for the case of IGMM yield
drastic performance improvements which become increasingly
higher as parameters of the underlying data vary, without any
loss in accuracy.

I. INTRODUCTION

Machine learning (ML) applications in enterprise settings

are increasingly becoming mission critical. As a result nu-

merous projects both in industry and academia integrate ML

techniques in RDBMS, Spark and numerous other production

systems [8], [4]. ML algorithms however have been developed

on the assumption that data is readily available on a single

input source, with the right formats and encodings. As such

effective integrations of ML technology in mission critical

systems faces a data representation mismatch. Relational data

are typically normalized [1] and as a result, data have to be

denormalized via primary/foreign key joins and materialized as

a single (temporary) relation to be provided as an input to the

ML algorithms. As a result the learning process commences

after joins have been performed on the relations involved.

Consider the example of an analyst modeling customer

shopping trends. The analyst builds a model utilizing customer

details: Customers(CustomerID, Address, ItemID) where the

ItemID is a foreign key of the item number referring to a new

table that stores the items sold by the company: Items(ItemID,

Price, Size, Colour, Category, ...). A join is required between

the two tables because some of the information in the Items

table, e.g. Price, Size and Colour are essential features of a

predictive model on buying patterns. After the join, the table

is materialized as a temporary table that has to be provided as

an input to the various ML algorithms utilized for predictive

analysis. Examples like this abound in data analytics; in a

video streaming company building recommendation models

one has to join user viewing history with video information,

at a banking application, building fraud detection models,

or conducting soft customer segmentation, requires a join of

customer purchasing/spending records with merchant data, in

review sites one has to associate via a join the reviewer meta-

data with their reviews for user modeling applications, etc.

Kumar et. al., [5], recognized these issues and proposed spe-

cific algorithms to build generalized linear models and execute

various linear algebra operations by pushing ML computations

through joins to base tables. That way to the extent possible for

the specific class of ML models considered, they demonstrated

performance advantages in certain scenarios. To the best of

our knowledge with the exception of [9] and their work on

Markov Chain Monte Carlo to date there has been no other

work considering classes of non-linear models in this context.

Gaussian Mixture Models (GMM) abound in various mod-

eling tasks; they are an established method to model complex

data spaces with diverse multidimensional characteristics. In

addition GMM are prevalent in financial analysis, quantitative

finance, astronomy [6] as well as banking applications espe-

cially dealing with the returns of asset classes [7].

In this paper, for the case of GMM we focus on Independent

Gaussian Mixture Models (IGMM) and compare different

applicable algorithms to construct such models over normal-

ized data. After introducing several applicable approaches,

we propose algorithms pushing the computation through join

for different types of Gaussians involved depending on their

statistical properties, while being able to deliver the correct

final model. Various trade-offs among the algorithms are

analyzed.

II. BACKGROUND AND PRELIMINARIES

In this section we will present material and notation neces-

sary for the remainder of the paper.

A. Gaussian Mixture Models (GMM)
Assume we are given N training data points x(n), 1 ≤

n ≤ N of dimensionality d. A Gaussian Mixture Model
(GMM) is a density model comprising a fixed number of
Gaussian distributions used for data clustering. The distribu-
tion of a mixture of K Gaussian components is: p(xn) =
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∑K
k=1 πkN(x(n)|μk,Σk) where πk is the mixing parameter

satisfying
∑K

k=1 πk = 1 and

N(x(n)|μk,Σk) =
1√

(2π)d|Σ|
e−

1
2
(x−μk)

TΣ−1(x−μk) (1)

is the probability density function of the kth Gaussian

component of the mixture model.

There are a number of algorithms that can be applied for

iteratively training GMM; however the Expectation Maximiza-

tion Algorithm (EM) [3] is the most widely used. EM is an

iterative method to identify the maximum likelihood when the

model contains an unobserved latent variable. The algorithm

iteratively converges to a local minimum. The EM algorithm

starts with some initial estimate of the parameters and then

iteratively updates the parameters until convergence. Each

iteration consists of one E step and one M step.
In the E step, we fix the mean and the variance of the

Gaussian distributions and re-estimate the mixing coefficients
πj for all values of k and n.

γ
(n)
k = p(z(n) = k|x) = πkN(x(n)|μk,Σk)∑K

j=1 πjN(x(n)|μj ,Σj)
(2)

where z(n) is the hidden variable for every observation, z ∼
Categorical(π) where πk ≥ 0 and

∑K
k=1 = 1. Essentially

γ
(n)
k are our ”soft” guesses for the values of z(n) at this step.

In the M step, we re-estimate the parameters given the

current responsibilities, for all values of k and n: μk =
1
Nk

∑N
n=1 γ

(n)
k x(n)

Σk = 1
Nk

∑N
n=1 γ

(n)
k (x(n) − μk)(x(n) − μk)

T

πk = Nk

N with Nk =
∑N

n=1 γ
(n)
k We iteratively run

E step and M step to train and update the model until

convergence criteria are met. One of the commonly used

criteria for checking convergence is by calculating the log like-

lihood: ln p(x|π, μ,Σ) = ∑N
n=1 ln(

∑K
k=1 πkN(x(n)|μk,Σk)).

We can stop when the log likelihood between two iterations

is less than some preset threshold.

A special case of Gaussian Mixture Models that’s widely

used in various machine learning applications [2], is the

Independent Gaussian Mixture Model. In this specific GMM

an underlying assumption is that the features are statistically

independent. As a result of the independent assumption in

the distribution of the mixture of K Gaussian components the

covariance matrix Σk becomes a diagonal matrix with only

nonzero entries on the diagonal. Based on different studies

[2] independent GMMs provide solid modeling accuracy even

in cases where features are not completely statistically inde-

pendent.

III. PROBLEM DESCRIPTION

We now introduce formally the problems we focus in this

paper. Assume relation S with nS tuples, and relation R with

nR tuples. For our learning problems, the feature vectors are

split across S and R, with dS features in XS and dR = d−dS
features in XR.

Given two relations S (SID, XS , FK) and R (RID, XR) with

a key-foreign key relationship (S.FK refers to R.RID), where

XS and XR are feature vectors, learn a mixture of Gaussians

over the result of the projected equi-join T(SID, [XS XR])

Symbol Meaning
R Relation
S Relation
K number of Gaussians
T Join Result Table
Y target of the NN data
nR Number of rows in R
nS Number of rows in S
n Number of rows in table T (n = nS )
dR Number of features in R
dS Number of features in S
d Number of features in total (d = dR + dS )

x(n) nth data point in a relation T (R join S)

xR
(n) nth data point in a relation R

xS
(n) nth data point in a relation S

μ[a : b] slice the vector μ from index a to b

TABLE I: Notation used in the paper

← π (R ��RID=FK S) such that the feature vector of a tuple in

T is the concatenation of the feature vectors from the joining

tuples of S and R. For the case of NN relation S has an

additional attribute Y which is the target for learning purposes

(in this case the projected schema becomes T(SID, Y, [XS ,

XR])). Table I summarizes the notation used in this paper.

Table T which is the result of the join of R,S may introduce

redundancy back to the data representation which normaliza-

tion removed in the first place. Such redundancy introduces a

lot of repeated computations during model building, which we

could potential save if we manage to operate on R,S directly to

the extend possible. In addition depending on the redundancy

introduced trade-offs may exist which we will explore in our

ensuing discussion.

For purposes of exposition we assume that the required joins

execute in a block nested loops fashion. Our algorithms and

proposals naturally generalize and are equally applicable when

other types of joins are adopted such as partitioned hash joins

for example.

IV. INDEPENDENT GMM (IGMM)

Independent Gaussian Mixture Models (IGMM) are a spe-

cial kind of GMMs used in practice [2]. In IGMMs the

covariance matrix is always diagonal because IGMMs assume

independence among the underlying Gaussian distributions.

For IGMMs we propose a way to compute both the E step

and M step over normalized data.

A. Baseline Approaches

M −IGMM is s baseline approach for computing IGMM.

It computes a join of the relations involved, materializes the

join result and executes the EM algorithm on the output. The

algorithm is summarized as Algorithm 1.

In a similar fashion, S − IGMM computes a join of the

relations involved on the fly without materializing the join

result and executes the EM algorithm on the output. This

method saves I/O in addition to being storage efficient, since

we do not need to write the materialized table on the disk. This

algorithm is essentially the same as Algorithm 1, however, it

does not perform step 1 in Algorithm 1 which is materializing

the table in the database. In addition in steps 5, 10, 16, instead
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Algorithm 1 Algorithm (M-IGMM)

1: Apply join R and S and materialize the table T after join

in the database

2: repeat
3: E Step:
4: for i ≤ number of batches do
5: Read batch i of T into memory

6: Update responsibility of data points in this batch

γ
(n)
k ← πkN(x(n)|μk,Σk)∑K

j=1 πjN(x(n)|μj ,Σj)
∀n ∈ batch i, ∀k

7: end for
8: M Step:
9: for i ≤ number of batches do

10: Read batch i of T into memory

11: Add to the sum results from this batch

12: Sumμk
+ =

∑|batch size i|
n=1 γ

(n)
k x(n)

13: end for
14: Update μk ← 1

Nk
Sumμk

15: for i ≤ number of batches do
16: Read batch i of T into memory

17: Add to the sum results from this batch

18: SumΣk
+ =

∑|batch size i|
n=1 γ

(n)
k ||x(n) − μk||2

19:

20: end for
21: Update Σk ← 1

Nk
SumΣk

22: Update πk ← Nk

N with Nk ←
∑N

n=1 γ
(n)
k

23: until Convergence

of reading data from table T, we perform a join of relation

R and S and read directly from the join as it is computed on

the fly. This is accomplished by reading R (in batches) and

retrieving from S data corresponding to keys form R.

B. Algorithm F-IGMM

The underlying idea in algorithm F−IGMM is to factorize

the execution. In F − IGMM we compute the E step and

M step without materializing the full join of R and S in the

database. Instead we push the computation closer to S and R
joining in a probe based manner when needed (using keys in

R to probe table S).

The algorithm is derived from Algorithm 1 as follows. F −
IGMM does not execute line 1 in algorithm 1 since we do

not need the table after the join to complete the calculations

required. Moreover, for lines 5, 10, 16, we are not reading

data from the joined table T any more, we directly read data

from table R and S. However instead of joining on the fly (as

in the case of S − IGMM ) we factorize the computation of

γ
(n)
k , μk,Σk over the i-th batch of R and the part of S retrieved

using the foreign keys of the i-th batch of R to probe S. Figure

??(c) depicts the basic idea. The specifics of the factorization

are outlined below.

1) E step: The E step involves calculating the responsibil-

ities given current parameters, where we need to calculate the

probability of each data point given the mean and variance of

the Gaussian distribution as per Equations 1,2. In the calcu-

lation of Equation 1, in N(x(n)|μk,Σk) the part 1√
(2π)d|Σ| is

easy to calculate since data from the underlying relations is not

directly involved in the calculation. When Σ is computed we

can compute this part numerically. While in the calculation

of e−
1
2 (x−μj)

TΣ−1(x−μj), data from both tables S and R is

required when computing (x(n)−μk)
TΣ−1

k (x(n)−μk). For the

special case of IGMM, the covariance matrix entries σi,j = 0
if i 	= j. As a result, we decompose the calculation as follows:

(x(n) − μk)
TΣ−1

k (x(n) − μk) =

[x
(n)
1 − μ1, x

(n)
2 − μ2, ..., x

(n)
d − μd]

T

× ⎡
⎢⎢⎢⎢⎣

σ−1
1,1 0 · · · 0

0 σ−1
2,2 · · · 0

.

.

.
.
.
.

. . .
.
.
.

0 0 · · · σ−1
m,m

⎤
⎥⎥⎥⎥⎦

×
[x

(n)
1 − μ1, x

(n)
2 − μ2, ..., x

(n)
d − μd]

=⎡
⎢⎢⎢⎢⎢⎣

(x
(n)
1 − μ1)2σ

−1
1,1 0 · · · 0

0 (x
(n)
2 − μ2)2σ

−1
2,2 · · · 0

.

.

.
.
.
.

. . .
.
.
.

0 0 · · · (x
(n)
m − μm)2σ−1

m,m

⎤
⎥⎥⎥⎥⎥⎦

where μk =
[
μ1, μ2, · · · , μd

]
is updated in algorithm 1 line

14. In order to calculate (x(n)−μk)
TΣ−1

k (x(n)−μk) we first

compute ||x(n)
i − μi||2σ−1

i,i for 1 ≤ i ≤ dS and store it in

memory as matrix UL (upper left matrix). Then we calculate

||x(n)
i −μi||2σ−1

i,i for dS+1 ≤ i ≤ d and store it in memory as

matrix LR (lower right matrix). Finally we combine (stitch)

matrix UL and matrix LR in memory to get the full matrix

of (x(n) − μk)
TΣ−1

k (x(n) − μk). Note that UL is a dS × dS
matrix and LR is a dR × dR matrix and their combination

yields a d× d matrix.

2) M step: Updating πk = Nk

N with Nk =
∑N

n=1 γ
(n)
k

does not involve reading data from tables R and S so we will

execute the update exactly as in algorithm 1.

To update equation μk = 1
Nk

∑N
n=1 γ

(n)
k x(n) we note that

μk is a 1× d vector with the first dS entries originating from
S and the remaining dR originating from R.

μk =

[
1

Nk

∑N
n=1 γ

(n)
k x(n)

1×d

]
(3)

=

[
1

Nk

∑N
n=1 γ

(n)
k x(n)

S
1×dS

1
Nk

∑N
n=1 γ

(n)
k x(n)

R
1×dR

]
(4)

We calculate 1
Nk

∑N
n=1 γ

(n)
k x(n)S using the data from table S

and calculate 1
Nk

∑N
n=1 γ

(n)
k x(n)R using the data from table R,

then concatenate the two vectors to obtain μk

To update equation σk = 1
Nk

∑N
n=1 γ

(n)
k ||x(n) − μk||2 we

observe that σk represents the diagonal entries of the full
covariance matrix Σk since all entries other than the diagonal
are zero. Thus, since σk is the diagonal entry, it is a 1×d vector
with the first dS entires coming from S and the remaining dR
coming from R:

σk =

[
1

Nk

∑N
n=1 γ

(n)
k ||x(n) − μk||2
1×d

]
(5)

=

[
σk−dS
1×dS

σk−dR
1×dR

]
(6)
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Experiment nS nR dS dR Clusters

Vary dR 106 and 5× 106 1000 5 Varied 5

Vary rr Varied 1000 5 5 and 15 5

Vary Clusters 106 1000 5 15 Varied

TABLE II: Synthetic Data dimensions for IGMM

where

σk−dS =
1

Nk

N∑
n=1

γ
(n)
k ||x(n)

S − μk[1 : dS ]||2 (7)

and

σk−dR =
1

Nk

N∑
n=1

γ
(n)
k ||x(n)

R − μk[dS + 1 : d]||2 (8)

σk−dS
is a 1× dS matrix calculated using data from table S

and σk−dR
is a 1×dR matrix calculated using data from table

R. We calculate 1
Nk

∑N
n=1 γ

(n)
k ||S(n)−μk[1 : dS ]||2 using the

data from table S and calculate 1
Nk

∑N
n=1 γ

(n)
k ||R(n)−μk[dS+

1 : d]||2 using the data from table R, then combine the two

vectors to get σk.

V. EXPERIMENTS

In this section we present a detailed experimental evaluation

of all the algorithms presented comparing their performance.

We compare the runtime performance of M − IGMM , S −
IGMM , F − IGMM for the case of IGMM . There are

two main parameters of interest in the underlying relations

that essentially quantify the impact of normalization in terms

of eliminating redundancy. These are dR (the dimension of

R) and the redundancy ratio (rr = nS

nR
). We vary these two

parameters controlling the amount of redundancy that the join

introduces.

In order to be able to control the parameters of interest and

vary them in a controlled way to observe trends, we utilize

synthetic data sets. We generate synthetic datasets for primary-

key/foreign-key joins with a wide range of attributes in the

relations involved. The parameters varied are shown in Table II

for IGMM experiments. We generate synthetic data sampling

from multiple Gaussian Distributions and add random noise in

accordance to previous work [5].

All experiments were run on a cluster of machines with 16

Intel Xeon E5630 2.53 GHz cores, 96 GB RAM and 338 GB

disk with CentOS 6.2. Our code is implemented in python

2.7.13 using numpy for all the matrix calculations and use

psycopg2 to read and write data from PostgreSQL 9.6.

Figure 1 presents the results for the case of the IGMM

algorithms varying redundancy ratio (rr) in Figure 1(a), vary-

ing the dimension of relation R (dR) in Figure 1(b) and the

number of clusters (c) in the gaussian mixture in Figure 1(c).

In Figure 1(a) it is evident that as rr increases the benefits

of the proposed F − IGMM become increasingly larger. For

dR = 5 the proposed algorithm is 2.2 times faster than the

other applicable approaches, which becomes 3 times faster

as dr = 15. The trend will persist becoming increasingly

larger as dR increases. Figure 1(b) presents the results of

the same experiment varying dR. It is evident that as dR
increases, the proposed algorithm becomes two to five times

(a) Varying rr (b) Varying dR (c) Varying c

Fig. 1: Performance Results for IGMM algorithms varying

parameters of interest

faster than the other approaches; the performance benefit will

keep on increasing as we increase dR. These trends persist

as we increase rr. Finally Figure 1(c) presents the results for

increasing the number of clusters (fixed rr and dR).For these

values as we vary c the proposed approach is three times faster.

This benefit will increase as we vary rr, dR. Results for real

data sets are omitted due to space limitations; depending on

the characteristics of the data sets they can be much larger

performance benefits for real data sets than those presented.

VI. CONCLUSIONS

We proposed a set of algorithms to execute Independent

Gaussian Mixture Models over normalized databases. In the

future it is natural to generalize our techniques to Neural

Networks, General Mixture of Gaussians and other popular

deep architectures, also addressing multi-way joins.
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