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ABSTRACT
Twitter is one of the main information sharing platforms in the
world with millions of tweets created daily. To ensure that users
get relevant content in their feeds Twitter extensively leverages
machine learning-based recommender systems. However, given
the large volume of data, all production systems must be both
memory and CPU efficient. In the 2021 ACM RecSys challenge
Twitter simulates the production environment with a large dataset
of almost 1 bilion user-tweet engagements that span a 4week period.
The goal is to accurately predict engagement type, and all models
are subject to strict run-time constraints during inference. In this
paper we present our approach to the 2021 ACM Recsys challenge.
We use a hybrid pipeline and leverage gradient boosting, neural
network classifiers and multi-lingual language models to maximize
performance. Our approach achieves strong results placing 3’rd
on the public leaderboard. We further explore the complexity of
language model inference, and show that through distillation it can
be possible to run such models in highly constrained production
environments.

CCS CONCEPTS
• Information systems→ Recommender systems; • Comput-
ing methodologies→ Neural networks.
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1 INTRODUCTION
The volume of information is increasing at an exponential rate so
recommender systems that surface relevant content to users have
become critically important for any online platform. This is par-
ticularly relevant for Twitter where millions of tweets are created
and shared daily, and most tweets have very short relevance time
span. The recommender system must thus be able to surface rele-
vant tweets in users’ feeds in near real-time. Given the immense
volume of data, all models deployed in production need to satisfy
strict run-time constraints to be practical. The 2021 ACM RecSys
challenge [1][3][4] organized by Twitter is focused on production
requirements of a large-scale real-life recommender system. This
challenge is a continuation of the 2020 challenge [2] with the same
goal of predicting four types of user-tweet engagements: Reply,
Retweet, Retweet with Comment and Like. In contrast to the 2020
challenge, the dataset is significantly larger consisting of almost
1 billion engagements from 45M unique users and 350M unique
tweets. The dataset spans 28 days with roughly 40M engagements
per day. All submitted models must adhere to strict run-time re-
quirements and complete inference on ∼14M test engagements in
under 24 hours on a cloud docker environment with 1 CPU and
64GB RAM. These constraints simulate Twitter’s production envi-
ronment where more expensive models become highly challenging
to deploy. To account for potential bias where tweets from users
with large following get wider exposure and engagement regardless
of their relevance or quality, the challenge introduces a fairness
metric. Tweet creators are binned into five group based on their
follower count and separate evaluation is done on each bin. The
final score is the average of scores for each bin and thus equalizes
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Figure 1: Inference Pipeline. Extracted features are passed to XGBoost and neural network classifiers and their scores are
blended to get the final prediction. Language model is used for the unconstrained version of the challenge where CPU and
RAM restrictions are lifted.

the relative contribution of each bin penalizing models that preform
better on more popular users.

2 APPROACH
Our approach consists of a hybrid gradient boosting (XGBoost)
and deep learning pipeline. First, we extract extensive features that
summarize information about tweet, tweet creator and engaging
user for each engagement. These features are then passed to the
XGBoost and neural net (NN) classifiers, and the resulting scores
are blended together to produce the final prediction. In addition,
for the unconstrained part of the challenge where CPU and RAM
requirements are removed, we add a multi-lingual language model
fine-tuned for tweet data to extract tweet representations. These
representations are passed to the NN classifier as additional feature
input. The diagram of our pipeline is shown in Figure 1.

2.1 Data Partitioning
Following our approach to the 2020 challenge [10], we partition
the data forward in time. We first order all engagements by tweet
creation date and use the last four hours as the forward-in-time
validation set. The remaining data from the 3 week training period
is used for feature extraction and model training. Splitting by tweet
creation date guarantees that our validation set only contains en-
gagements that are strictly after the training engagements, and that
tweet id are fully disjoint between the two sets. This simulates the
test set-up of the challenge where the goal is to predict engagement
types for user-tweet pairs where all tweets are created after the
training period. Moreover, while four hours is a relatively small
interval, it still contains over 4.8M engagements and we found it to
generalise well to the challenge leaderboard. Our data partitioning
is illustrated in Figure 2.

To generate training data, we slide a 24-hour non-overlapping
window through the training set. Engagements in the each 24-hour
window are taken as training targets and those outside of the win-
dow are used for feature extraction as shown in Figure 2. Note that
we break the temporal structure by also extracting features from
engagements that are forward-in-time from the training window.
We find that including future engagements leads to a considerable
improvement in model performance as it significantly increases the
amount of data available for feature extraction.

2.2 Feature Extraction
We conduct extensive feature engineering to describe the tweet,
engaging user, and tweet creator for each engagement, with partic-
ular focus on historical engagements and similarities between the
three entities. In total we extract 443 features that can be organized
into four main groups:
• Tweet Content Features These features directly summarize
the content and metadata of the tweet (tweet text tokens, hash-
tags, present media, present links, and present domains) en-
coded as one-hot categorical features. We remove values that
appear less that 1.5% in the training data to reduce dimension-
ality and improve generalisation. We also include the number
of categorical values for each meta data field that can contain
multiple values (e.g. tweet text token count). Following [8], we
compute target encoding (TE) for each categorical feature as
follows:

TE(C) =
nC · ȳC +wsmooth · ȳ

nC +wsmooth
(1)

where C is a tuple of categorical values, nC is the appearance
count for C , ȳC is the target mean for C , ȳ is the global target
mean, and wsmooth is a smoothing parameter set to 20. We
then use top-3 TE values and statistics such as sum and mean
as features. Lastly, tweet text tokens are decoded back to text
and we use a regex to generate text features such as number
of characters, number of words, number of words with lead-
ing uppercase character, number of @ handles, average word
length etc.
• User Features These features summarize the engaging user.
We include base statistics such as user’s follower and follow-
ing count, follower-to-following ratio and verified status. We
also summarize past engagements for the user, such as total
number of engagements for each engagement type, average
creator verified status, average user-creator following and av-
erage creator follower and following counts. These statistics
are repeated for past engagements where user is the creator,
and we summarize engaging user for those engagements. To
capture the type of content that user typically engages in, we
average categorical one-hot features from unique tweets in
past engagements.
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Figure 2: Data Partitioning. Last 4 hours of the 3 week released engagement data are used for validation and the rest for
model training. To create the training set we slide a 24-hour non-overlapping window through the training time period. All
engagements in the training window are used as training targets and those outside (including forward-in-time) are used for
feature extraction. Challenge leaderboard is computed on the engagements from the week after the released data. Two weeks
before the challenge ended Twitter released a portion of the engagements from the test week (LeaderBoard Val), allowing
challenge participants to train and validate on this data.

• Creator Features Analogous to engaging user, we extract fea-
tures for tweet creator. These features are similar to user fea-
tures, and contain statistics on follower and following counts,
verified status, and whether user is following creator. We also
compute features from creator’s past engagements both as
engaging user and as a creator.
• User-Creator Features For these features we focus on sum-
marizing the relationship between engaging user and creator.
We compute the neighbor-based collaborative filtering similar-
ity between user and creator based on the binary interaction
matrix R where Ruu∗ = 1 if user u previously engaged with
any tweet from creator u∗, and Ruu∗ = 0 otherwise. Similar-
ity between rows/columns of R indicates the degree to which
the corresponding users have similar engagement patterns for
engaged/created tweets. We compute this similarity for user-
creator and in reverse for creator-user. We also summarize
the joint user-creator engagement history where we count the
number of engagements of each type between the pair and
various other statistics such as time since last engagement etc.

Using these features we train XGBoost and NN classifiers. For
XGBoost we train four separate binary models, one for each en-
gagement type. NN architecture is described below.

2.3 Neural Network Classifier
Our NN architecture consists of five main blocks with feed-forward
layer and ReLU activation in each block. The output block consists
of a fully connected layer followed by a sigmoid activation to output
four probabilities that correspond to the four engagement types.
Since user can have multiple engagements with a given tweet, we
optimize a binary cross entropy loss:

L = −
1
N

N∑
i=1

∑
e
yie log ŷie + (1 − yie ) (1 − log ŷie ) (2)

where N is the number of training examples, e is the engagement
type, yie is 1 if user engaged with the tweet in the form of e and
0 otherwise, and ŷie is the predicted engagement probability. Our
feature input contains features that vary significantly in scale and
distribution, e.g. number of followers vs. one-hot encoded tweet
meta data. Tree-based models split features by thresholding and
are invariant to monotonic transformation, so feature scaling is
generally not required. However, NN models use gradient descent

to update learnable parameters and are sensitive to input scale [7].
This can be illustrated with a simple 1-layer model ŷi = σ (wT xi ).
The gradient step for this model is given by:

w← w − α ·
1
N

N∑
i=1

xTi
(
yi − σ (wT xi )

)
(3)

where α is the learning rate. We see that the gradient is scaled
directly by the raw input xi . When different dimensions in xi vary
significantly in scale the corresponding dimensions in w will get
disproportionally large or small updates. This can be partially miti-
gated with per-dimension adaptive learning rate optimizers such as
Adam, but learning can still get stuck or converge to sub-optimal
solutions [7]. In practice, it is nearly always advantageous to apply
pre-processing to re-scale the input before it is passed to the NN.
We examine the following popular transformations:
• Min-Max scaling: x′ = (x − xmin)/(xmax − xmin)
• Standarization: x′ = (x − µ)/σ
• Yeo-Johnson power transform [11]
• Log1p transform [7]: x′ = loge (1 + |x|) ⊙ sign(x)

We consistently find that the Log1p transformation works best on
this data and use it for all NN models.

2.4 Multi-Lingual Language Model
Tweet text can provide valuable information that is highly relevant
for determining the type of engagement. However, the challenge
dataset contains tweets in over 60 different languages, making it
difficult to apply traditional semantic information extraction tech-
niques such as sentiment analysis. Recent advances in NLP have
produced highly accurate language models that have out-of-the-
box support for multiple languages. These models are typically
based on the Transformer [9] architecture and can generate em-
beddings that encode semantic and syntactic information across
the supported languages. In this work we explore the pre-trained
multilingual Bert (MBert) model [5], and demonstrate that it can be
used to achieve a significant accuracy boost. MBert is pre-trained
on the Wikipidea documents in over 100 different languages. The
distribution of text in Wikipidea documents is very different from
the highly condensed tweet text that typically contains many abbre-
viations, slang, emojis and other artifacts. To adapt the model to the
target tweet distribution we first apply unsupervised fine-tuning
where we use MBert’s masked language loss training and apply it
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(a) (b)

Figure 3: (a) Validation set NN performance for different input transformations. (b) Perplexity on unique validation set tweets
for the MBert model during unsupervised fine-tuning.

Stage Model AP Retweet RCE Retweet AP Reply RCE Reply AP Like RCE Like AP Comment RCE Comment

Before Fine-Tuning
XGB 0.4004 25.71 0.2308 25.14 0.6654 15.36 0.0627 16.86
NN 0.4007 25.46 0.2309 25.02 0.6600 13.99 0.0617 16.59
SLM 0.4097 26.12 0.2505 26.25 0.6769 14.33 0.0658 17.26

After Fine-Tuning

XGB 0.4221 27.61 0.2397 26.21 0.7052 20.87 0.0646 17.44
NN 0.4291 28.07 0.2442 26.57 0.7132 21.64 0.0675 17.91
SLM 0.4411 29.34 0.2684 28.34 0.7247 23.01 0.0720 18.89

SLM (small) 0.4401 29.06 0.2665 28.04 0.7241 26.64 0.0715 18.65
SLM (tiny) 0.4372 28.92 0.2617 27.77 0.7213 22.41 0.0710 18.53

Table 1: LB Val Results.We show results for eachmodel before and after it is fine-tuned on the 70% of the LB Val. All evaluation
is done on the remaining 30% of LB Val. AP is average precision and RCE is relative cross entropy (log loss), see [2] for more
details.

Team AP Retweet RCE Retweet AP Reply RCE Reply AP Like RCE Like AP Comment RCE Comment

Competition Leaderboard

1. nvidia_rapidsai 0.4614 29.51 0.2649 26.61 0.7216 23.61 0.0692 17.68
2. Synerise_v1 0.4514 28.52 0.2559 25.74 0.7046 22.09 0.0662 16.92
3. LAYER6_AI 0.4317 27.42 0.2490 25.35 0.6836 19.85 0.0660 16.86
4. test_lightgbm 0.4060 25.09 0.2118 22.64 0.6636 17.91 0.0520 14.03

Unconstrained Leaderboard LAYER6_AI 0.4496 29.02 0.2741 27.28 0.7011 21.65 0.0715 18.06

Table 2: Final Leaderboard Results. We show top-4 teams from the final competition leaderboard as well as our best result
from the unconstrained leaderboard where CPU and RAM restrictions are removed.

to tweet text. We incorporate this model into the NN classifier by
taking MBert’s output CLS token and appending it to input features.
The full architecture is then trained end-to-end by propagating the
gradient to update all NN and MBert layers.

3 EXPERIMENTS
3.1 Training Details
All feature extraction and deep learning experiments are conducted
onUbuntu serverswith Intel(R) Xeon(R) Silver 4114 CPU@2.20GHz,
256GB RAM, and Nvidia Titan V GPUs. Language model training
experiments are conducted on a server with 768GB RAM and 8
Tesla V100 GPUs. By applying the sliding window approach we
generate 712,852,721 training and 4,859,770 validation instances.
For XGBoost we use the gradient tree booster with 200 trees, depth

15, learning rate 0.1, and column sub-sampling 0.8. Separate XG-
Boost model is trained for each of the four engagements using the
binary logistic loss.

For NN classifier we train three different 5-layers architectures:
[400, 800, 500, 250, 100], [500, 900, 600, 250, 100], and [512, 1024,
500, 250, 100], where numbers represent hidden layer sizes from
first to last layer. All NN models are trained with a large batch size
of 1M engagements, learning rate of 1e-4, layer-wise dropout in
{0.1, 0.2, 0.3} and Adam optimizer. We test different input trans-
formations outlined in Section 2.3 and the results are shown in
Figure 3a. There is a clear pattern where Log1P transform leads to
the best performance on each of the four engagements followed by
Standardization and Yeo-Johnson. Notably with the Log1P trans-
form we are able to nearly match the results from a well tuned
XGBoost model which is challenging to achieve on tabular fea-
tures [7].
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Figure 4: (a) & (b) Relative improvement for SLM over NN on Retweet engagement broken down by language. (c) Model infer-
ence speed in samples per second on the target docker image where only one CPU is available and 64GB of RAM.

We take the pre-trained MBert model from the Huggingface
library1, the base model has 12 Transformer blocks with 768 dimen-
sions each. This model is fine-tuned with unsupervised masked
language loss on 341M unique training set tweets for 3M steps with
a learning rate of 2e-5 and batch size of 64 tweets per GPU. The
perplexity on unique validation set tweets is shown in Figure 3b,
we see a very significant improvement from over 40 at the start
of fine-tuning to 5.72 at the end. The almost 8x reduction in per-
plexity demonstrates that fine-tuning is very important to adapt
the language model to the tweet distribution. After unsupervised
fine-tuning, we connect the CLS token to the NN classifier and
do end-to-end supervised training. The NN is randomly initialized
and the MBert is initialized with the average of three checkpoints
from unsupervised fine-tuning. We use a learning rate of 5e-4 for
all NN layers and 1e-5 for all MBert layers. We deliberately use a
much larger learning rate for NN layers since they are initialized
randomly and need more updates than MBert which is near con-
vergence. To improve training stability we use gradient clipping of
1 for all layers. We refer to this model as SLM.

3.2 Results
Two weeks before the competition end Twitter released a portion
of the engagement data from the target test week. We refer to
this data as the leaderboard validation set (LB Val), and challenge
participants were allowed to both train and evaluate models on this
set. As this data contains direct information from the target test time
period we focus on evaluating all models on LB Val. To maximize
performance we split LB Val by unique tweet ids where 70% is used
to fine-tune models and remaining 30% for evaluation. To fine-tune
XGBoost we continue adding trees to the ensemble that are fitted
on the 70% of LB Val. The results are shown in Table 1, we see that
before fine-tuning XGBoost generally outperforms NN but the gains
are relatively minor indicating that the Log1p transform is highly
effective for NN training. Adding language model to NN leads to a
significant boost in performance across all four engagements, with
particularly large gains on Reply where SLM improves AP by close
to 2 points or 8.4%.

1https://huggingface.co/bert-base-multilingual-cased

Results in the bottom half of the table show that, as expected,
fine-tuning on LB Val is highly effective with large gains across
all models and engagement types. Tweets have a strong temporal
dynamic and typically contain in-the-moment information (news
events, announcements etc.) that has a short life span. Consequently,
training on the engagements from the test time period is highly
beneficial as the model is able to correlate what information is
relevant to users at that particular moment in time. However, we
caution against such training if the intended use is forward-in-time
prediction.

Final leaderboard results are shown in Table 2. We use an ensem-
ble of three NN models and an XGboost model, where each model
is fine-tuned on the LB Val set. Our approach, LAYER6 AI, achieves
highly competitive performance placing 3’rd with a total docker in-
ference runtime of 13 hours. We also show our best unconstrained
result where CPU and RAM restrictions are removed. Here, we
add the language model-based classifier SLM to the ensemble and
observe a consistent gain across all engagement for both AP and
RCE.

3.3 Language Model Analysis
In Figures 4a and 4b we show languages that get the largest perfor-
mance boost on the Retweet engagement from adding the language
model relative to the base NN classifier. The more rare languages
such as Hebrew, Dutch, Thai, and Greek get the biggest boost with
up to 18% and 45% relative improvement in AP and RCE respec-
tively. Rare languages don’t have sufficient engagement data for the
model to accurately capture preferences for users that engage with
that content. Accurately modeling tweet content can be particularly
beneficial in these sparse situations since the language model is
pre-trained on a large text corpus from each language.

Adding MBert to the NN classifier makes the model considerably
more expensive to run, and we are unable to run it on the restricted
docker environment. To investigate whether language models can
be practically used in constrained production environments, we
experiment with distillation to reduce model size and improve run-
time. In particular, we experiment with two smaller versions of the
MBert architecture: small [2-768-1536] and tiny [1-128-512], where
numbers correspond to number of Transformer blocks, vocabulary
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embedding dimension, and hidden dimension respectively. For both
architectures we first train them with distillation on MBert using a
temperature of 2 (following [6]), then attach to NN classifier and
fine-tune end-to-end as in SLM. The results are shown in Table 1 as
SLM (small) and SLM (tiny). We see that even with a very compact
SLM (tiny) architecture we can preserve most of the SLM gains and
still significantly improve over the best NN classifier.

Figure 4c shows inference runtime in examples per second on the
constrained docker environment with one CPU and 64GB of RAM.
To score 14M test engagements in 24 hours on this environment the
model has to have an inference throughput of at least 162 examples
per second. From the figure we see that both NN and XGBoost are
comfortably above that threshold. XGBoost is around 3x slower
than NN because it contains 4 separate ensembles (one for each
engagement) which can only be run sequentially on one CPU. As
such XGBoost is best suited for binary classification since infer-
ence runtime scales linearly with the number of classes. We also
see that adding MBert significantly slows down inference, where
SLM can only process 2.8 examples per second and would require
over 57 days to process the full test set. Distillation considerably
improves this runtime, in particular the SLM (tiny) architecture has
a throughput of 133.3 which is near the target throughput threshold.
These results demonstrate that through distillation we can leverage
the representational power of language models while satisfying
very strict production constraints. We believe that with further
engineering and experiments, both throughput and accuracy of
SLM (tiny) can be further improved.

4 CONCLUSION
In this paper we present our approach to the 2021 ACM RecSys
Challenge organized by Twitter. Our pipeline consists of exten-
sive feature extraction followed by XGBoost and neural network
classifiers. In the unconstrained phase of the challenge, we further
explore multi-lingual language models, and show that they lead to
a significant boost in performance. We then apply distillation to
compress the language model architecture, and demonstrate that

with sufficient engineering effort these models can be run in highly
constrained production environments.
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