
RecSys Challenge 2021

User Engagement Modeling with Deep 
Learning and Language Models

Maksims Volkovs, Felipe Perez*, Zhaoyue Cheng*, Jianing Sun*,
Sajad Norouzi*, Anson Wong*, Pawel Jankiewicz, Barum Rho

1



Agenda

● Data Partitioning

● Feature Extraction

● XGBoost Model

● NN Classifier Model

● Multi-Lingual Language Model

● Experiments

2



Approach Overview

3

● We adopt a hybrid gradient boosting (XGBoost) and Deep Learning Pipeline
● We first extract extensive features that summarize information about tweet, creator, user
● Then we pass the features to XGBoost and neural net (NN) classifiers
● In the unconstrained leaderboard, we use a multi-lingual language model fine-tuned for tweet 

data to extract tweet representations to help the prediction



Data Partitioning

4



Data Partitioning

5

● We split four engagements by time and use the last 4 hours as forward in-time validation set
● This split simulates a real-life production environment
● To generate training data, we slide a 24-hour non-overlapping window through the training 

set



Feature Extraction

6



Feature Extraction
In total we extract 443 features that can be organized into 4 main groups

● Tweet Content Features
● User Features
● Creator Features
● User-Creator Features

7



Feature Extraction - Tweet Content Features
● We summarize content and metadata (tweet text tokens, hashtags, present media, 

present links, and present domains) of the tweet and encode them as one-hot 
categorical features

● We also include the number of categorical values for each metadata field that 
contain multiple values, we compute target encoding (TE) for each categorical 
feature

● We then use top-3 TE values and statistics such as sum and mean as features
● Lastly, tweet text tokens are decoded back to text and we use a regex to generate 

text features such as number of characters, number of words, number of words 
with leading uppercase character, number of @ handles, average word length etc

8



Feature Extraction - User Feature

● User features summarize the engaging user
● We include base statistics such as follower and following count, 

follower-to-following ratio and verified status
● We also summarize past engagements for the user, such as total number of 

engagements for each engagement type, average creator verified status, average 
user-creator following and average creator follower and following counts

● To capture the type of content that user typically engages in, we average 
categorical one-hot features from unique tweets in past engagements.

9



Feature Extraction - Creator Feature
● These features are similar to user features
● We compute statistics on follower and following counts, verified status and 

whether the user is following creator
● We also compute features from creator’s past engagements both as engaging user 

and as creator

10



Feature Extraction - User-Creator Feature
● For these features we focus on summarizing the relationship between engaging 

user and creator
● We compute neighbor-based collaborative filtering similarity between user and 

creator based on the binary interaction matrix R
● Similarity between rows/columns of R indicates the degree to which the 

corresponding users have similar engagement patterns for engaged/created 
tweets

● We also summarize the joint user-creator engagement history where we count the 
number of engagements of each type between the pair and various other statistics 
such as time since last engagement

11



XGBoost Model

12



XGBoost Classifier
● Using the features described before, we train our XGBoost and NN classifiers
● For XGBoost we train 4 separate binary models, one for each engagement type

13



NN Classifier

14



NN Classifier - Normalization
● Since our input feature contains features that vary significantly in scale and 

distribution
● We find that in practice it’s nearly always advantageous to apply pre-processing to 

re-scale the input before it is passed to the NN. 
● We examine the following popular transformation:

● We consistently find that Log1p transformation works best on this data and use it 
for all NN models for this competition

15



NN Classifier - Normalization
● NN Performance after using different Transformations

16



NN Classifier - Architecture and Training
● Our NN architecture consists of five main blocks with feed-forward layer and 

ReLU activation in each block. 
● The output block consists of a fully connected layer followed by a sigmoid 

activation to output four probabilities that correspond to the four engagement 
types

● Since user can have multiple engagements with a given tweet, we optimize a 
binary cross entropy loss

17



NN Classifier - Architecture and Training
● For NN classifier we train three different 5-layers architectures: [400, 800, 500, 250, 

100], [500, 900, 600, 250, 100], and [512, 1024, 500, 250, 100], where numbers represent 
hidden layer sizes from first to last layer

● All NN models are trained with a large batch size of 1M engagements, learning 
rate of 1e-4, layer-wise dropout in {0.1, 0.2, 0.3} and Adam optimizer

18



Multi-Lingual Language Model

19



Multi-Lingual Language Model
● we explore the pre-trained multilingual Bert (MBert) model, and demonstrate that 

it can be used to achieve a significant accuracy boost
● To adapt the model to the target tweet distribution we first apply unsupervised 

fine-tuning where we use MBert’s masked language loss training and apply it to 
tweet text

● We incorporate this model into the NN classifier by taking MBert’s output CLS 
token and appending it to input features

● The full architecture is then trained end-to-end by propagating the gradient to 
update all NN and MBert layers

20



Multi-Lingual Language Model - Training
● We fine tune the Multi-Lingual BERT model with unsupervised masked language 

loss on 341M unique training set tweets for 3M steps with a learning rate of 2e-5 
and batch size of 64 tweets per GPU

● We see very significant improvement on validation perplexity from over 40 at the 
start of fine-tuning to 5.72 at the end

● After unsupervised fine-tuning, we connect the CLS token to the NN classifier and 
do end-to-end supervised training

● We use a learning rate of 5e-4 for all NN layers and 1e-5 for all MBert layers. We 
deliberately use a much larger learning rate for NN layers since they are 
initialized randomly and need more updates than MBert which is near 
convergence

● We refer to this model as SLM

21



Multi-Lingual Language Model - Perplexity

22

Perplexity on unique validation set tweets for the BERT model during unsupervised fine-tuning



Experiments

23



Leaderboard Results

24



Language Model Analysis

25

● Relative improvement for SLM over NN on Retweet Engagement broken down by language



Distillation Experiments

26

● Adding MBert to the NN classifier makes the model considerably more expensive to run, and we are 
unable to run it on the restricted docker environment

● To investigate whether language models can be practically used in constrained production 
environments, we experiment with distillation to reduce model size and improve runtime

● We experiment with two smaller versions of the MBert architecture: small [2-768-1536] and tiny 
[1-128-512], where numbers correspond to number of Transformer blocks, vocabulary embedding 
dimension, and hidden dimension respectively

● For both architectures we first train them with distillation on MBert, then attach to NN classifier and 
fine-tune end-to-end as in SLM

● The results are shown as SLM (small) and SLM(tiny). We see that even with a very compact SLM 
(tiny) architecture we can preserve most of the SLM gains and still significantly improve over the 
best NN classifier



Distillation Results

27



Model Inference Speed

28

● Model inference speed of different models in terms of samples/sec



29

Thank you!


