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Approach Overview
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● We adopt a hybrid gradient boosting (XGBoost) and Deep Learning Pipeline
● We first extract extensive features that summarize information about tweet, creator, user
● Then we pass the features to XGBoost and neural net (NN) classifiers
● In the unconstrained leaderboard, we use a multi-lingual language model fine-tuned for tweet 

data to extract tweet representations to help the prediction



Data Partitioning
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Data Partitioning
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● We split four engagements by time and use the last 4 hours as forward in-time validation set
● This split simulates a real-life production environment
● To generate training data, we slide a 24-hour non-overlapping window through the training 

set



Feature Extraction
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Feature Extraction
In total we extract 443 features that can be organized into 4 main groups

● Tweet Content Features
● User Features
● Creator Features
● User-Creator Features
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Feature Extraction - Tweet Content Features
● We summarize content and metadata (tweet text tokens, hashtags, present media, 

present links, and present domains) of the tweet and encode them as one-hot 
categorical features

● We also include the number of categorical values for each metadata field that 
contain multiple values, we compute target encoding (TE) for each categorical 
feature

● We then use top-3 TE values and statistics such as sum and mean as features
● Lastly, tweet text tokens are decoded back to text and we use a regex to generate 

text features such as number of characters, number of words, number of words 
with leading uppercase character, number of @ handles, average word length etc

8



Feature Extraction - User Feature

● User features summarize the engaging user
● We include base statistics such as follower and following count, 

follower-to-following ratio and verified status
● We also summarize past engagements for the user, such as total number of 

engagements for each engagement type, average creator verified status, average 
user-creator following and average creator follower and following counts

● To capture the type of content that user typically engages in, we average 
categorical one-hot features from unique tweets in past engagements.
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Feature Extraction - Creator Feature
● These features are similar to user features
● We compute statistics on follower and following counts, verified status and 

whether the user is following creator
● We also compute features from creator’s past engagements both as engaging user 

and as creator
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Feature Extraction - User-Creator Feature
● For these features we focus on summarizing the relationship between engaging 

user and creator
● We compute neighbor-based collaborative filtering similarity between user and 

creator based on the binary interaction matrix R
● Similarity between rows/columns of R indicates the degree to which the 

corresponding users have similar engagement patterns for engaged/created 
tweets

● We also summarize the joint user-creator engagement history where we count the 
number of engagements of each type between the pair and various other statistics 
such as time since last engagement
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XGBoost Model
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XGBoost Classifier
● Using the features described before, we train our XGBoost and NN classifiers
● For XGBoost we train 4 separate binary models, one for each engagement type

13



NN Classifier
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NN Classifier - Normalization
● Since our input feature contains features that vary significantly in scale and 

distribution
● We find that in practice it’s nearly always advantageous to apply pre-processing to 

re-scale the input before it is passed to the NN. 
● We examine the following popular transformation:

● We consistently find that Log1p transformation works best on this data and use it 
for all NN models for this competition
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NN Classifier - Normalization
● NN Performance after using different Transformations
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NN Classifier - Architecture and Training
● Our NN architecture consists of five main blocks with feed-forward layer and 

ReLU activation in each block. 
● The output block consists of a fully connected layer followed by a sigmoid 

activation to output four probabilities that correspond to the four engagement 
types

● Since user can have multiple engagements with a given tweet, we optimize a 
binary cross entropy loss
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NN Classifier - Architecture and Training
● For NN classifier we train three different 5-layers architectures: [400, 800, 500, 250, 

100], [500, 900, 600, 250, 100], and [512, 1024, 500, 250, 100], where numbers represent 
hidden layer sizes from first to last layer

● All NN models are trained with a large batch size of 1M engagements, learning 
rate of 1e-4, layer-wise dropout in {0.1, 0.2, 0.3} and Adam optimizer
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Multi-Lingual Language Model
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Multi-Lingual Language Model
● we explore the pre-trained multilingual Bert (MBert) model, and demonstrate that 

it can be used to achieve a significant accuracy boost
● To adapt the model to the target tweet distribution we first apply unsupervised 

fine-tuning where we use MBert’s masked language loss training and apply it to 
tweet text

● We incorporate this model into the NN classifier by taking MBert’s output CLS 
token and appending it to input features

● The full architecture is then trained end-to-end by propagating the gradient to 
update all NN and MBert layers
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Multi-Lingual Language Model - Training
● We fine tune the Multi-Lingual BERT model with unsupervised masked language 

loss on 341M unique training set tweets for 3M steps with a learning rate of 2e-5 
and batch size of 64 tweets per GPU

● We see very significant improvement on validation perplexity from over 40 at the 
start of fine-tuning to 5.72 at the end

● After unsupervised fine-tuning, we connect the CLS token to the NN classifier and 
do end-to-end supervised training

● We use a learning rate of 5e-4 for all NN layers and 1e-5 for all MBert layers. We 
deliberately use a much larger learning rate for NN layers since they are 
initialized randomly and need more updates than MBert which is near 
convergence

● We refer to this model as SLM
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Multi-Lingual Language Model - Perplexity
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Perplexity on unique validation set tweets for the BERT model during unsupervised fine-tuning



Experiments

23



Leaderboard Results
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Language Model Analysis
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● Relative improvement for SLM over NN on Retweet Engagement broken down by language



Distillation Experiments
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● Adding MBert to the NN classifier makes the model considerably more expensive to run, and we are 
unable to run it on the restricted docker environment

● To investigate whether language models can be practically used in constrained production 
environments, we experiment with distillation to reduce model size and improve runtime

● We experiment with two smaller versions of the MBert architecture: small [2-768-1536] and tiny 
[1-128-512], where numbers correspond to number of Transformer blocks, vocabulary embedding 
dimension, and hidden dimension respectively

● For both architectures we first train them with distillation on MBert, then attach to NN classifier and 
fine-tune end-to-end as in SLM

● The results are shown as SLM (small) and SLM(tiny). We see that even with a very compact SLM 
(tiny) architecture we can preserve most of the SLM gains and still significantly improve over the 
best NN classifier



Distillation Results
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Model Inference Speed
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● Model inference speed of different models in terms of samples/sec
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Thank you!


