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ABSTRACT
Large item catalogs and constantly changing preference trends
make recommendations a critically important component of every
fashion e-commerce platform. However, since most users browse
anonymously, historical preference data is rarely available and
recommendations have to be made using only information from
within the session. In the 2022 ACM RecSys challenge, Dressipi re-
leased a dataset with 1.1million online retail sessions in the fashion
domain that span an 18-month period. The goal is to predict the
item purchased at the end of each session. To simulate a common
production scenario all sessions are anonymous and no previous
user preference information is available. In this paper, we present
our approach to this challenge. We leverage the Transformer ar-
chitecture with two different learning objectives inspired by the
self-supervised learning techniques to improve generalization. Our
team, LAYER 6, achieves strong results placing 2’nd on the final
leaderboard out of over 300 teams.

CCS CONCEPTS
• Computing methodologies→ Neural networks; • Informa-
tion systems→ Recommender systems.
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1 INTRODUCTION
With rapidly changing preference trends and mostly anonymous
browsing, the fashion industry presents a significant challenge to
recommender systems. To properly address these difficulties, it is
critically important to develop a recommender system that can
deliver accurate recommendations using only information within
the session.

The 2022 ACM RecSys challenge [1], organized by Dressipi,
brings these challenges to light. Data on user sessions together
with corresponding product information is provided, and the goal
is to predict the purchased item at the end of each session. The
dataset contains 1.1 million online user sessions over the 18-month
period, and all sessions are anonymous with no previous user infor-
mation available. The dataset is partitioned forward in time, with
the last month corresponding to the test period (100k sessions).
The test data is further split randomly into two halves for public
and final leaderboards respectively. Final leaderboard is used to
determine the final team ranking in the competition. To encourage
correct prediction of the bought item as early as possible, a random
cut is applied to each test session where up to 50% of items are
dropped at the end of the session. All teams are required to provide
a ranking of 100 items from the candidate items set for each test
session, and the submissions are evaluated using the Mean Recipro-
cal Rank (MRR) metric. There is a very strong temporal pattern in
the data where over 30% of items in the candidate set only appear
in the last three months of the training period.

2 APPROACH
2.1 Data Partitioning
To partition the data, we first sort all session by the time of the first
item view. We then partition the ordered sessions forward in time
to preserve temporal information in the data. Specifically, the last
month of the 17-month training period is used as the validation set
with over 81 thousand sessions and the rest as the training set. We
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Figure 1: Model architecture for our Transformer model. The input item sequence (in reverse order) for a given session is
first embedded with item e, positional p, and monthm embeddings followed by L Transformer layers to form the final hidden
representation. Note that the first item e0 in the session is the unboserved purchased item encoded by the [mask] embedding
that the model needs to predict.

also perform a random cut to the validation set where up to 50% of
items are drooped at the end of each session. The accuracy with this
partitioning generalizes well to the public leaderboard as it directly
corresponds to the data partitioning for the leaderboard and final
sets. The remaining 16-month training set is further divided into
16 subsets where each subset contains all the sessions in the same
month.

2.2 Feature Construction
We conduct extensive feature engineering to describe item and
session contexts, with particular focus on item-item similarities
based on co-occurrence in history. In total we extract 88 features
that can be organized into 3 main groups:

Item Categorical Features: summarize item content attributes.
Instead of directly using the raw attributes as features, we represent
them with learnable embeddings (see Section 2.3).

Item Count Features: extract the number of historical pur-
chases and impressions (viewed but not purchased) for each item.
We observe a strong temporal dependency in the dataset and such
information reflects the changes in item popularity. We create sep-
arate features by aggregating over last month, last 2 months, and
all time, to capture both short and long term item trends.

Item Co-occurrence Features: summarize the item-item sim-
ilarity by computing the co-occurrence between the (candidate)
purchased item and impression items, as well as the co-occurrence
between every item pair in the session. These features are computed
using the previous month sessions only for training at each month
because of the strong time dependency.

2.3 Embedding Layer
To provide meaningful inputs to the Transformer, we create a learn-
able embedding layer. The embedding layer consists of item em-
beddings extracted from categorical content features, positional

embeddings based on item position in the session, and month em-
beddings from session month. We note that as the computational
complexity of self-attention layers grows quadratically with the
sequence length, we set the maximum session length to be n. Any
session with a length longer than n is truncated to the latest n items.

Item Embedding. For every item i we are provided a set of
category-value pairs that summarize attributes such as color, fit and
style. Some categories have multiple values associated with them
(e.g. multiple colors). Let F i be the set of categories associated with
item i , and for each category c let F ic be the corresponding values
associated with c . If fc,v ∈ Rd is a learnable representation for the
category-value pair (c,v), we define the item category embedding
f ic as:

f ic =

{ 1
|F ic |

∑
v ∈F ic fc,v if c ∈ F i

[unk] otherwise
(1)

where f ic is set to a learnable [unk] embedding if category c is not
present for item i . Note that while f ic summarizes item attribute in-
formation, it does not capture other intrinsic properties of the item
such as popularity and trendiness. To this end, we let di be a learn-
able vector representation uniquely associated with item i . We then
set the input feature embedding for item i to be (di , f ic1 , f

i
c2 , ..., f

i
ck )

where c1, . . . , ck are the top-k most popular categories that appear
in the dataset. The feature embedding contains rich information
from both item content and contextual attributes extracted by the
model. The corresponding item embedding is obtained by feed-
ing the feature embedding through a linear layer to project to the
Transformer input dimension d . We denote the full set of item em-
beddings after this linear projection as E ∈ RI×d where I is the
total nubmer of items.

Positional Embedding.Order of the items in the session is very
important for accurate prediction, in particular items viewed later
in the session typically reveal more about user intent and purchased
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item. To encode this information we add positional embeddings to
the input embeddings.We find that learnable positional embeddings
achieve better performance than sinusoidal embeddings.

Month Embedding. Fashion has a strong seasonality aspect
where users typically shop for very different types of items in the
summer than in winter. We incorporate seasonality information
by encoding each of the twelve months with a separate learnable
embedding of size d . For each session we then extract month from
the timestamp of the first item and add the corresponding month
embedding to all inputs.

2.4 Transformer Architecture
The overall model architecture is shown in Figure 1(a). Given a
session with n items, we first add a [mask] token at the front of
the sequence which is be used for prediction. The input embed-
dings, (h00,h

0
1, ...,h

0
n ), are formed by adding the item, positional,

and month embeddings together. Since the attention function is
computed on all inputs simultaneously, we stack the input em-
beddings to form input matrix H0 ∈ Rn×d . We then iteratively
compute the hidden representation hli for item i at layer l with the
Transformer layer [6]. As illustrated in Figure 1(b), the Transformer
layer consists of two parts: a Multi-Head Attention module and a
Position-wise Feed-Forward network.

Multi-Head Attention. Following the previous work [3, 5, 6],
we adopt Multi-Head Attention by projecting H l at layer l into h
subspaces whereh is the number of attention heads. Each head has a
different set of learnable parameters and the output representations
are concatenated and projected:

MultiHead(H l ) = Concat(head1, .., headh )W o

headi = Attention(H lW
Q
i ,H

lW K
i ,H

lWV
i )

Attention(Q,K ,V ) = softmax

(
QKT√
d/h

)
V

(2)

where the projection matrices, WQ
i ∈ Rd×d/h , W K

i ∈ Rd×d/h ,
WV
i ∈ Rd×d/h , andW o ∈ Rd×d are learnable parameters.
Position-wise Feed-Forward Network. To introduce non-

linearity into the model, we adopt Position-wise Feed-Forward
network from [3, 5, 6]:

FFN(hi ) = max(0,hiW1 + b1)W2 + b2 (3)

While the same linear tranformations, W1 ∈ Rd×2d , b1 ∈ R2d ,
W2 ∈ R2d×d , and b2 ∈ Rd , are applied at each position, different
tranformations are used from layer to layer.

2.5 Training Objectives
Given that there are fewer than 1M sessions in the training set, we
find that even relatively small Tansformer configurations quickly
overfit when trained in a purely supervised way. Inspired by the
recent work on self-supervised training [3], we propose to combine
two tasks for session-based recommendation: Masked Session Mod-
eling (MSM) and Purchased Item Prediction (PIP). MSM regularizes
the model with a self-supervised loss, and PIP aims to accurately
predict the purchased items.

Masked Session Modeling. MSM is similar to the language
model pre-training in NLP, where contextual token representations

are obtained via a self-supervised objective consisting of masking
out portions of the sentence. In our case, we randomly mask 15% of
the items in the session by replacing them with the token [mask],
and predict the masked items given the rest of the context. For
example:

Input:

Session: Purchased I tem:

Random Mask

Label:

Here, the first mask, [mask]0, is used for purchased item, and the
rest are masked session items to be predicted via MSM. Dot product
is performed between the final hidden state of themasked token,hLm ,
and the item embeddings, E ∈ RI×d , to produce the item prediction
scores Pm ∈ RI . We adapt weight-tying [2], a commonly used
technique in the NLP community, by tying with the output layer
projection matrix to the input item embedding. This is motivated
by the fact that the inputs and outputs both represent items and
should thus be in the same space. We apply softmax on the item
prediction scores to generate the probabilities:

ifm = 0 f (Pm )i =


ePm,i∑
j∈C ePm, j

if i ∈ C

0 otherwise

else f (Pm )i =


ePm,i∑
j∈V ePm, j

if i ∈ V

0 otherwise

(4)

where C is the set of candidate items for the purchased item, and
V is the union of all the items that have been viewed in the same
month as current session. In the challenge, C is set to the union
of all items that were purchased during the same month. Both C
and V thus preserve the temporal dynamics and force the model
to discriminate between items that are relevant at the time of the
session. We use cross entropy objective to match predictions for
masked items with ground truth:

LMSM = −
1
|M |

∑
m∈M

∑
i ∈I

ymi log f (Pm )i (5)

whereM contains all masked items (including purchased item), and
ymi is 1 for the item that was masked with maskm and 0 for all
other items.

Purchased Item Prediction. In this approach, we consider
session-based recommendation as a purely supervised task. We
randomly sample k “negative" items per session from C \

{
ip

}
,

where ip is the purchased item. For each sampled item, we place it
in the [mask]0 position of the purchased item and make forward
pass through the Transformer to obtain the corresponding rep-
resentation hL0 . Extracted item features (see Section 2.2) are then
concatenated with hL0 and passed through two fully connected lay-
ers with batchnorm and ReLU activations to output the sigmoid
prediction score for the item. This score represents the likelihood
that the item was purchased at the end of the session. The goal is
to maximize the score for purchased item ip and lower it for all
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negative items so we again leverage the cross entropy objective:

LP I P = −
1

(k + 1)

(
log(ŷp ) +

∑
k

log(1 − ŷk )

)
(6)

Here, ŷp and ŷk are prediction scores for purchased and sampled
negative items respectively. Note that PIP allows to incorporate
arbitrary item features into the classifier on top of hL0 and has
greater flexibility. But this comes at the cost of slower inference
since instead of fast dot product inference in MSM, we now have
to make forward passes through the Transformer for every item in
the candidate set.

In practice, we find that it is beneficial to combine the two tasks,
and our best model uses both losses with hyper-parameter α con-
trolling the contribution between them:

L = αLMSM + LP I P (7)

2.6 Inference
We use a different inference method for each of the training tasks.
For models trained with MSM, we take the final hidden state of
the first token, hL0 , to perform dot product on the item embeddings
from the candidate set. Dot-product scores are then sorted to get the
top-k item list. For models trained with PIP, we pass each item from
the candidate set through the Transformer by replacing [mask]0
with that item’s embedding. Sigmoid scores from the classifier are
then similarly sorted to get the top-k list. For models trained with
both tasks, we find that PIP inference leads to better performance
and use that in all experiments.

3 EXPERIMENTS
3.1 Training Details
All experiments are conducted on Ubuntu servers with Intel Xeon(R)
E5-2686 v4 @ 2.30GHz CPUs, 500GB RAM, and NVIDIA Tesla V100
GPUs. By using the first 16 months for training set and the last
month as the validation set, we generate 918, 382 training sessions
and 81, 618 validation sessions. After finding the optimal set of
parameters, we retrain the model on the full 17 month period that
includes both training and validation sets, and then run inference
on the test set. Item features include 73 categorical features with em-
bedding size 8, 4 normalized co-occurrence features for purchased
and impressed items, and 6 item count features for last month, last
two months, and all months for both purchases and impressions.
The Transformer has input dimension 128 and feed-forward di-
mension 256 with 4 layers, 4 attention heads and 0.1 dropout rate.
The maximum session length is set to 100 and the number of nega-
tives for the PIP objective is 19. The model is jointly trained using
AdamW optimizer [4] with a batch size of 512. The learning rate is
warmed up for 2000 iterations until 1e-3 and decayed with cosine
decay after. Following the challenge rules [1], we use the Mean
Reciprocal Rank (MRR) objective to evaluate model performance.

3.2 Results
In addition to Transformer, we also implement three other models:
XGBoost, VAE, and DAE. The results for all four models on the
leaderboard set are shown in Table 1. We see that the Transformer
outperforms all other models with a large improvement. The key

Table 1: Leaderboard results for different model types.

Model MRR

XGBoost 0.1993
VAE 0.2026
DAE 0.2035
Transformer 0.2121

Table 2: Leaderboard ablation results for different values of
α .

Objective MRR

MSM 0.2109
PIP 0.2030
MSM+PIP (α=0.1) 0.2121
MSM+PIP (α=0.2) 0.2115
MSM+PIP (α=0.5) 0.2108
MSM+PIP (α=1.0) 0.2104

Table 3: Final challenge results from the top-5 teams, our
team is LAYER 6.

Team MRR

1. zzh 0.2160
2. LAYER 6 0.2148
3. NVIDIA RAPIDSAI 0.2086
4. MooreWins 0.2076
5. THLUO 0.2062

difference between Transformer and the other models is in the
objective function. XGBoost, VAE, and DAE only perform super-
vised learning by predicting the purchased item, while Transformer
incorporates a self-supervised objective. This allow to use a much
larger model size, around 10x larger than the baselines, without
overfitting. Final leaderboard results are shown in Table 3. We use
a linear ensemble of all four models and achieve highly competitive
performance placing 2’nd.

Objective Analysis.We investigate the effects of MSM and PIP
tasks onmodel performance by varying theα parameter. The results
are shown in Table 2. MSM outperforms PIP, and joint learning with
two objectives (MSM+PIP) outperforms each objective individually.
MSM allows the model to learn correlations within the viewed
items in the session and between viewed and purchased items by
masking the purchased item and 15% of the viewed items. On the
other hand, the input for PIP has no masking, so the model can
take advantage of the full information. Combining the two tasks
consistently produces the best performance.

Session Length Analysis. To understand the effect of session
length on performance, we compute MRR for each session length
from 1 to 10+ across the four models. We also compute relative
improvement for Transformer over XGBoost, VAE, and DAE at each
length. The results evaluated on the validation set are shown in
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Figure 2: (a) Model performance by session length and the relative improvement for Transformer with respect to XGBoost,
VAE, and DAE. (b) Transfomer performance for different maximum input session lengths. (c) Transformer performance for
different number of negatives in the PIP task.

Figure 2(a). For all four models the performances drops on longer
sessions. One possible explanation is that longer sessions contain
multiple intents where user is browsing around before settling
on what to buy, making inference harder. However, we can also
observe that the relative performance improvement for Transformer
is generally increasing at longer session lengths. The attention
mechanism in Transformer enables the model to only focus on the
relevant portions of the item sequence which can be particularly
effective for longer sessions.

Maximum Session Length Analysis. We analyze the effect
of maximum input session length on Transformer, and the results
are shown in Figure 2(b). The MRR steadily increases with longer
maximum session length. As we discussed in the previous sec-
tion, Transformer self-attention can effectively extract information
from longer sessions so increasing maximum length is beneficial.
However, self-attention also scales quadratically (both runtime and
memory) with input length, and we find it prohibitively expensive
to increase maximum length beyond 100. In the future work, a
promising direction is to explore methods for efficient training with
longer sequence lengths.

Number of Negatives Analysis. An important component of
the PIP object is the number of negative samples used during train-
ing. Here, we need to find a balance between having enough neg-
ative samples to provide a rich training signal, but at the same
avoid skewing the model towards predicting everything as nega-
tive. Figure 2(c) shows the effect of the number of negatives on the

model accuracy. We can observe that MRR peaks a 19 so 20:1 ratio
of negative to positive samples is close to optimal for this dataset.

4 CONCLUSION
In this paper, we present our approach to the 2022 ACM RecSys
Challenge organized by Dressipi. Our best model consists of feature
extraction followed by embedding and Transformer self-attention
layers. This model is trained with a combination of self-supervised
and fully supervised tasks, and we demonstrate the effectiveness of
incorporating self-supervised learning for session modelling. We
achieve highly competitive performance, placing 2’nd on the final
leaderboard out of over 300 teams.
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