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ABSTRACT
The majority of recent work in latent Collaborative Filtering (CF)
has focused on developing new model architectures to learn accu-
rate user and item representations. Typically, a standard pairwise
loss function (BPR, Triplet, etc.) is used in these models, and lit-
tle exploration is done on how to optimally extract signals from
the available preference information. In the implicit setting, nega-
tive examples are sampled, and these losses allocate weights that
solely depend on the difference in user distance between observed
(positive) and negative item pairs. This can ignore valuable global
information from other users and items, and lead to sub-optimal
results. Motivated by this problem, we propose a novel loss which
first leverages mining to select the most informative pairs, followed
by a weighing process to allocate more weight to harder examples.
Our weighting process consists of four different components, and
incorporates distance information from other users, enabling the
model to better position the learned representations. We conduct
extensive experiments and demonstrate that our loss can be ap-
plied to different types of CF models leading to significant gains
with each type. In particular, by applying our loss to the graph
convolutional architecture, we achieve new state-of-the-art results
on four different datasets. Further analysis shows that through
our loss the model is able to learn better user-item representation
space compared to other losses. Full code for this work is available
here: https://github.com/layer6ai-labs/MCL.

CCS CONCEPTS
• Information systems→Recommender systems;Collabora-
tive filtering; Personalization; • Computing methodologies
→ Neural networks.
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1 INTRODUCTION
With the increasing amount of information available online, pro-
viding accurate recommendations is becoming essential for online
platforms such as multimedia streaming, e-commerce, and social
media. Collaborative Filtering (CF) embedding approaches are com-
monly used to model user and item implicit feedback (e.g. clicks)
on these platforms. From matrix factorization [11, 13, 22] to more
recent graph-based methods [7, 18, 29, 32, 37], generating high
quality user and item embeddings lies at the core of recent progress
in recommender systems.

Embedding CF models are commonly trained with a pairwise
loss, typically in the form of Bayesian Personalized Ranking (BPR)
loss [26] or Triplet loss [9]. Pairwise learning involves pushing
positive (interacted) items closer to the user than negative (not
interacted) items. To reduce computational complexity negative
items are sampled at each iteration. The BPR loss is often used in
latent models [6, 14, 23, 26], and more recently in graph convolu-
tional models [7, 12, 18, 39], while Triplet loss is mostly found in
deep metric learning approaches [10, 24, 33]. Other commonly used
pairwise CF losses are cross entropy [1, 8, 31] and mean squared
error [15, 27, 38].

Recent works in recommender systems and other fields such
as computer vision, have found that pairwise losses can result in
sub-optimal model training due to information loss. In Li et al. [16],
the authors argue that the common pairwise losses only use the
difference in user distance between positive and negative items, and
fail to consider other important information such as relationships
between the items themselves. Related works in computer vision [2,
21, 28], show that random sampling of negative items is inefficient
at finding hard examples, and can lead to sub-optimal training
on easier and less informative data. To address these problems
different sampling techniques and training schemes have been
proposed in order to fully utilize the information in the preference
data [10, 30, 36]. However, this area remains under-explored as
research in latent CF has largely focused on designing better model
architectures to generate user and item embeddings.
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In this work we investigate pairwise learning, and propose a
novel learning framework where we combine hard instance mining
with a new Mixed-Centric loss function. The loss function allo-
cates weights that depend not only on the relative hardness of each
pair but also on the global alignment with other users and items.
Specifically, our weighting strategy has four components: a user-
item centric component that measures how a given item relates
to the user, a same/different-type centric components that contrast
positive and negative items for the user, and a batch centric com-
ponent that provides a global context relating items from different
users. We implement our learning framework with three leading
CF methods: CML [10], NeuMF [8], and LightGCN [7]. Extensive
experiments on multiple public datasets show that training with our
approach significantly improves performance of all three models
with relative gains of up to 60%. Furthermore, LightGCN trained
with our approach achieves new state-of-the-art results on each
dataset. Analysis of the learned user/item embeddings reveals that
our approach can better separate the embedding space, has stable
performance that improves with the number of negative pairs, and
is more robust to change in dimension. The major contributions of
this paper are summarized below:
• We analyze the traditional losses used for training CF models
and evaluate their drawbacks through pairwise weight analysis.

• We propose a loss function that leverages mining to find most
informative pairs, and a weighting scheme that combines local
information from the target user with global information from
other users in the batch.

• We implement our loss on top of existing leading models and
demonstrate that it leads to significant improvement in accuracy
achieving state-of-the-art results on multiple datasets.

• We analyze the learned embedding space and study the effects
of each component including number of negatives, dimension,
and other hyper-parameters.

2 RELATEDWORK
Pairwise models are common across different fields of machine
learning with applications in CF, computer vision, NLP and other
areas [7, 28, 36]. A common approach to optimize these models is
by randomly sampling pairs throughout learning. However, the
candidate space is typically large and can contain many uninfor-
mative or easy instances so random sampling can lead to sub-par
results. A number of methods have been proposed in CF to ad-
dress this issue by developing strategies to improve the quality of
sampled pairs. Ding et al. [3] proposes to generate high quality
pairs by training with reinforcement learning. Park and Chang [25]
obtains more informative samples through adversarial sampling
and training. Ding et al. [5] shows a relation between score vari-
ance and false positives, and uses it to design a sampling strategy.
Different from these methods that focuses mostly on generate or
get high-quality pairs especially negative samples, we use a simpler
mining strategy which works well with the loss and assign different
weights to sampled pairs.

In addition to better sampling, other methods have explored
different losses to incorporate additional information between users
and items. In deep metric learning, Angular Loss [35] takes angle
relationship into consideration, while Lifted Structure loss [21]

proposes to use pairwise across samples within a batch. In recent
CF models, Li et al. [16] adds a component in the loss to push
positive and negative item away from each other. Ma et al. [19]
incorporates explicit user-user and item-item similarity modeling
into the objective function. We build on these approaches and first
analyze common pairwise losses from a weight-based perspective.
We then propose a new loss that combines negative sample mining
with local information from target user and global information
from other users in the batch.

3 WEIGHT ANALYSIS FOR PAIRWISE LOSSES

Given a user 𝑢, let 𝑃𝑢 denote the set of positive items that the
user has interacted with, and let 𝑁𝑢 denote the negative items that𝑢
hasn’t interacted with. A positive pair is defined as {𝑢, 𝑗} where 𝑗 ∈
𝑃𝑢 , and a negative pair is defined as {𝑢, 𝑘} where 𝑘 ∈ 𝑁𝑢 . Latent CF
models aim to find embeddings for users and items where proximity
between user-item pairs corresponds to relevance. We denote a
proximity measure between user 𝑢 and item 𝑖 as 𝐸𝑢𝑖 , common
measures include Euclidean distance and dot product. In pairwise
learning the loss 𝐿 is typically designed to push positive items closer
to the user and negative ones further apart. The magnitude of the
push is determined by the gradient of each user-item pair, and we
can analyse it as a weight:

𝑤+
𝑢 𝑗 =

𝜕𝐿

𝜕𝐸𝑢 𝑗
, 𝑤−

𝑢𝑘
= − 𝜕𝐿

𝜕𝐸𝑢𝑘
(1)

where 𝑤+
𝑢 𝑗

and 𝑤−
𝑢𝑘

are scalar gradient weights for positive and
negative pairs respectively. Using this framework we analyze two
commonly used CF losses Triplet and BPR.

Triplet Loss The Triplet loss aims to make the difference be-
tween distances for positive and negative pairs to be greater than
the margin 𝜆:

𝐿𝑡𝑟𝑖𝑝𝑙𝑒𝑡 (𝑢, 𝑗, 𝑘) = [𝐸𝑢 𝑗 − 𝐸𝑢𝑘 + 𝜆]+ (2)

where 𝐸 is the Euclidean distance. The associated weights are given
by:

𝑤+
𝑢 𝑗 = 𝑤−

𝑢𝑘
=

{
1, if 𝐸𝑢 𝑗 + 𝜆 > 𝐸𝑢𝑘

0, otherwise
(3)

The Triplet loss thus selects pairs satisfying 𝐸𝑢 𝑗 + 𝜆 > 𝐸𝑢𝑘 and
discards those with 𝐸𝑢 𝑗 + 𝜆 ≤ 𝐸𝑢𝑘 . All the selected pairs have the
same weight of 1 and discarded pairs have a weight of 0.

BPR Loss The BPR loss aims to make the dot product for a
positive pair to be higher than the dot product for a negative pair:

𝐿𝐵𝑃𝑅 (𝑢, 𝑗, 𝑘) = log 𝜎 (𝐸𝑢𝑘 − 𝐸𝑢 𝑗 ) (4)

where 𝐸 is the dot product between corresponding user and item
embeddings, and 𝜎 is the sigmoid function. The weights are given
by:

𝑤+
𝑢 𝑗 = 𝑤−

𝑢𝑘
= − 1

1 + 𝑒𝐸𝑢𝑘−𝐸𝑢𝑗

= −𝜎 (𝐸𝑢 𝑗 − 𝐸𝑢𝑘 )
(5)

BPR thus uses the dot product difference between the positive and
negative pairs to allocate the weights. This can be viewed as a soft
version of the Triplet loss, instead of using a hinge function with
constant weights, BPR weights are scaled with a sigmoid function.
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Both Triplet and BPR losses can miss important information
during the training process. One one hand, the Triplet loss weighs
every qualifying pair equally which can be sub-optimal particularly
in the later stages of training where we want the model to focus on
the difficult pairs. On the other hand, the BPR loss weights pairs
by the dot product difference which allows for dynamic weight
allocation to emphasize harder pairs. However, since the pairs are
sampled randomly, two pairs with highly varied difficulty could
be sampled together, leading to inconsistent weight allocation. For
example, if a easy positive pair is sampled with a hard negative
pair, the resulting weight can be excessive for the easy positive
and insufficient for the hard negative. We also note, that these two
losses only rely on the differences between the positive and negative
pairs to determine the weights, while ignoring other information in
the batch such as relationship to other users and items. Since item
embedding space is shared between users, mining information from
the batch can provide additional constraints on the embeddings
and facilitate learning. In the following section we explore these
concepts and propose a new loss to address these shortcomings.

4 OUR APPROACH
In this section we introduce our learning framework that consists
of pair mining and our novel Mixed-Centric loss function. Building
on the weight analysis in Section 3, we show that under our frame-
work the pair weight consists of four components. Specifically, we
show that pair mining can be viewed as different-type centric com-
ponent that contrasts positive and negative items for a given user.
Meanwhile, the weighing allocated by the Mixed-Centric loss is
directly influenced by three components: user centric component
measures how a given item relates to the user, same-type centric
component compares items of the same type (positive or negative)
for the user, and batch centric component contrasts items across dif-
ferent users. We formally define each component below and discuss
their importance.

Pair Mining Influenced by the related work in self-supervised
learning from the computer vision domain [36], at each iteration
we aim to find hard positive and negative examples for the model
to focus on. Conceptually, we define a hard positive example as an
item that is further from the user than at least one negative item.
Similarly, a hard negative example is an item that is closer to the
user than at least one positive item. This forms the basis of our
mining procedure where at each iteration we discard items that
don’t pass the hardness criteria. To account for the fact that the
embedding space (and corresponding distances) is continuously
changing throughout learning, we add a margin when comparing
distances between items. Formally, a positive pair {𝑢, 𝑗} is selected
if:

𝐸𝑢 𝑗 > min
𝑘∈𝑁𝑢

𝐸𝑢𝑘 − 𝜖 (6)

where 𝐸 is the Euclidean distance, 𝑁𝑢 is the set of negative items for
𝑢, and 𝜖 is a margin parameter that controls the degree of separation.
Similarly, a negative pair {𝑢, 𝑘} is selected if:

𝐸𝑢𝑘 < max
𝑗 ∈𝑃𝑢

𝐸𝑢 𝑗 + 𝜖 (7)

where 𝑃𝑢 is the set of positive items for 𝑢. The mining procedure is
illustrated in Figure 1, and can be viewed as a form of binary hinge
weight where selected items have a weight of 1 and discarded items

Figure 1: Illustration of the pair mining process, line length
represents distance to the user. Left: positive items whose
distance to the user is smaller than the distance of the clos-
est negative itemminus the margin are discarded, all others
are kept. Right: negative items whose distance to the user is
farther than the distance of the farthest positive item plus
the margin are discarded, all others are kept.

have a weight of 0. In practice the set of negative items 𝑁𝑢 can be
very large, to reduce computational complexity at each iteration
we randomly sample a small subset of negative items and apply the
mining procedure to that subset.

Mixed-Centric Loss (MCL) After pair mining, we denote the
selected positive and negative items for user 𝑢 as 𝑃𝑠𝑢 and 𝑁 𝑠

𝑢 respec-
tively. Given a batch of𝑚 users 𝐵, we define our loss as:

𝐿𝑀𝐶𝐿 =
1
𝛼
log[1 + 1

𝑚

∑
𝑢∈𝐵

∑
𝑗 ∈𝑃𝑠

𝑢

𝑒𝛼 (𝐸𝑢𝑗+𝜆𝑝 ) ]

+ 1
𝛽
log[1 + 1

𝑚

∑
𝑢∈𝐵

∑
𝑘∈𝑁 𝑠

𝑢

𝑒−𝛽 (𝐸𝑢𝑘+𝜆𝑛) ]
(8)

Here, 𝜆𝑝 and 𝜆𝑛 are hyper-parameters controlling the margin al-
lowance for the positive and negative pairs, and 𝛼, 𝛽 control the
loss contribution from positive and negative pairs respectively. The
first term in Equation 8 aims to lower the distance for all selected
positive pairs, and the second term aims to raise it for all selected
negative pairs. Under this loss the weight for a positive pair {𝑢, 𝑗}
is given by:

𝑤+
𝑢 𝑗 =

1
𝑚

· 𝑒𝛼𝐸𝑢𝑗

𝑒−𝛼𝜆𝑝 + 1
𝑚

∑
𝑢′∈𝐵

∑
𝑖∈𝑃𝑠

𝑢′

𝑒𝛼𝐸𝑢′𝑖

=
1
𝑚

· 1
𝑤+
1 (𝑢, 𝑗) +𝑤

+
2 (𝑢, 𝑗) +𝑤

+
3 (𝑢, 𝑗)

(9)
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Figure 2: Illustration of the three weighting components in our Mixed-Centric loss. Circles represent users and triangles
represent items. Length of each line represents distance between the corresponding user-item pair. The width of the line
represents the weight on that pair – the thicker the line, the larger the weight.

This weight can be partitioned into three components𝑤+
1 ,𝑤

+
2 and

𝑤+
3 :

𝑤+
1 (𝑢, 𝑗) = 𝑒−𝛼 (𝐸𝑢𝑗+𝜆𝑝 )

𝑤+
2 (𝑢, 𝑗) =

1
𝑚

∑
𝑖∈𝑃𝑠

𝑢

𝑒𝛼 (𝐸𝑢𝑖−𝐸𝑢𝑗 )

𝑤+
3 (𝑢, 𝑗) =

1
𝑚

∑
𝑢′∈𝐵
𝑢′≠𝑢

∑
𝑖∈𝑃𝑠

𝑢′

𝑒𝛼 (𝐸𝑢′𝑖−𝐸𝑢𝑗 )

Similarly, the weight for a negative pair {𝑢, 𝑘} can be decomposed
into three analogous components:

𝑤−
𝑢𝑘

=
1
𝑚

· 1
𝑤−
1 (𝑢, 𝑘) +𝑤

−
2 (𝑢, 𝑘) +𝑤

−
3 (𝑢, 𝑘)

(10)

where:
𝑤−
1 (𝑢, 𝑘) = 𝑒𝛽 (𝐸𝑢𝑘+𝜆𝑛)

𝑤−
2 (𝑢, 𝑘) =

1
𝑚

∑
𝑖∈𝑁 𝑠

𝑢

𝑒𝛽 (𝐸𝑢𝑘−𝐸𝑢𝑖 )

𝑤−
3 (𝑢, 𝑘) =

1
𝑚

𝑚∑
𝑢′∈𝐵
𝑢′≠𝑢

∑
𝑖∈𝑁 𝑠

𝑢′

𝑒𝛽 (𝐸𝑢𝑘−𝐸𝑢′𝑖 )

For brevity, we focus on illustrating how the positive components
𝑤+
1 ,𝑤

+
2 , and𝑤

+
3 influence the overall weight𝑤+, as analogous ar-

guments hold for the negative weights.𝑤+
1 is the user-item centric

component and depends only on the distance between 𝑢 and 𝑗 .
Harder positive items that are further from the user have a smaller
𝑤+
1 and larger overall weight 𝑤+

𝑢 𝑗
, this effect is illustrated in Fig-

ure 2(a). In𝑤+
2 , the target item 𝑗 is compared with all other positive

items in 𝑃𝑠𝑢 that pass the mining criteria. This component can thus
be viewed as same-type centric, where if distance 𝐸𝑢 𝑗 is larger than
distances between 𝑢 and other items of the same type, the overall
weight𝑤+

𝑢 𝑗
is increased. This has a regularization effect on the item

embedding space where the loss favours to have all items of the
same type within a similar distance to the user, and outliers are
strongly penalised; Figure 2(b) demonstrates this effect. Finally,𝑤+

3
compares target pair distance 𝐸𝑢𝑖 with other user-item distances
𝐸𝑢′𝑖 within the batch, and can be interpreted as the batch-centric

Table 1: Complexity analysis. N denotes the total number of
pairs, U denotes the total number of the users, I denotes the
total number of the items, D denotes the embedding dimen-
sion, and S denotes the memory size in SRNS [4].

Method Time Complexity Space Complexity

BPR [26] 𝑂 (𝑁𝐷) 𝑂 ((𝑈 + 𝐼 )𝐷)
Triplet [9] 𝑂 (𝑁𝐷) 𝑂 ((𝑈 + 𝐼 )𝐷)
SML [16] 𝑂 (𝑁𝐷) 𝑂 ((𝑈 + 𝐼 )𝐷)
SRNS [4] 𝑂 (𝑁𝐷𝑆) 𝑂 ((𝑈 + 𝐼 )𝐷)
MCL 𝑂 (𝑁𝐷) 𝑂 ((𝑈 + 𝐼 )𝐷)

Table 2: Dataset statistics.

Dataset #User #Item #Interactions Density

Amazon-Digital-Music 5,541 3,568 46,846 0.237%
Amazon-Grocery 14,684 8,713 108,017 0.084%
Amazon-Books 52,406 41,264 1,856,747 0.086%
Yelp2021 97,462 48,294 2,209,755 0.047%

component. This component provides additional consistency across
users, where the loss aims to place all positive items within the
same distance for each user. Pairs that are significantly further away
have a larger overall weight, and are emphasized during training,
this is illustrated in Figure 2(c).

Jointly, these components convey both local context on how the
target item relates to the user, and global context on how the item
relates to other items of the same type from the target user as well
as other users in the dataset. Combining local and global contexts
enables the model to enforce stricter consistency on the embedding
space which, as we show in experiments section, leads to better
separation of the user-item embeddings and significant accuracy
improvement.

Complexity Analysis
The time complexity of MCL can be split into two parts: pair

mining and loss computation. Given a user 𝑢, let 𝑛𝑢 ≪ |𝑁𝑢 | denote
the number of negative pairs sampled for this user, and 𝑝𝑢 = |𝑃𝑢 | the
number of positive pairs. The total number of sampled pairs across
all users is denoted by𝑁 where𝑁 =

∑
𝑢∈𝑈 𝑝𝑢+𝑛𝑢 . We note that the
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Table 3: Recall (top) and NDCG (bottom) results for all datasets with CML, NeuMF, and LightGCN as base models. The best-
performing model for each dataset and base model is highlighted in bold and next best model is underlined. Models trained
with SML, SRNS, and our loss are indicated with "+SML", "+SRNS", and "+MCL" respectively. Relative improvements compar-
ing to the second best model are shown in brackets. Asterisks denote statistically significant improvements according to the
Wilcoxon signed-rank test.

Datasets CML CML
+SML

CML
+SRNS

CML
+MCL NeuMF NeuMF

+SML
NeuMF
+SRNS

NeuMF
+MCL LightGCN LightGCN

+SML
LightGCN
+SRNS

LightGCN
+MCL

Amazon-
Digital-Music

R@5 0.0405 0.0453 0.0415 0.0459 (+1.32% ) 0.0875 0.1203 0.1137 0.1429 (+18.8%*) 0.1426 0.1289 0.1518 0.1612 (+6.19%*)
R@10 0.1157 0.1215 0.1253 0.1400 (+11.7%*) 0.1330 0.1825 0.1615 0.2120 (+16.2%*) 0.2100 0.1916 0.2078 0.2308 (+9.90%*)
R@20 0.2129 0.2169 0.2234 0.2447 (+9.53%*) 0.1976 0.2520 0.2206 0.2937 (+16.5%*) 0.2802 0.2652 0.2821 0.3082 (+9.25%*)

Amazon-
Grocery

R@5 0.0303 0.0318 0.0325 0.0365 (+12.3%*) 0.0367 0.0436 0.0407 0.0585 (+34.2%*) 0.0590 0.0473 0.0607 0.0699 (+15.2%*)
R@10 0.0643 0.0683 0.0671 0.0732 (+7.17%*) 0.0595 0.0659 0.0642 0.0896 (+36.0%*) 0.0888 0.0780 0.0909 0.1051 (+15.6%*)
R@20 0.1152 0.1185 0.1165 0.1230 (+3.80% ) 0.0951 0.1024 0.0946 0.1360 (+32.8%*) 0.1306 0.1204 0.1353 0.1492 (+10.3%*)

Amazon-Books
R@5 0.0417 0.0510 0.0531 0.0608 (+14.5%*) 0.0296 0.0346 0.0234 0.0488 (+41.0%*) 0.0542 0.0476 0.0465 0.0634 (+17.0%*)
R@10 0.0695 0.0832 0.0853 0.0957 (+12.2%*) 0.0494 0.0583 0.0402 0.0802 (+37.6%*) 0.0871 0.0774 0.0762 0.1000 (+14.8%*)
R@20 0.1102 0.1300 0.1330 0.1450 (+9.02%*) 0.0804 0.0944 0.0659 0.1253 (+32.7%*) 0.1348 0.1193 0.1181 0.1495 (+10.9%*)

Yelp2021
R@5 0.0234 0.0300 0.0267 0.0316 (+5.33% ) 0.0202 0.0202 0.0162 0.0298 (+47.5%*) 0.0327 0.0242 0.0296 0.0361 (+10.4%*)
R@10 0.0421 0.0522 0.0483 0.0555 (+6.32%*) 0.0348 0.0356 0.0282 0.0514 (+44.4%*) 0.0542 0.0423 0.0502 0.0607 (+12.0%*)
R@20 0.0738 0.0877 0.0773 0.0921 (+5.02% ) 0.0581 0.0595 0.0471 0.0861 (+44.7%*) 0.0881 0.0708 0.0823 0.0976 (+10.8%*)

Datasets CML CML
+SML

CML
+SRNS

CML
+MCL NeuMF NeuMF

+SML
NeuMF
+SRNS

NeuMF
+MCL LightGCN LightGCN

+SML
LightGCN
+SRNS

LightGCN
+MCL

Amazon-
Digital-Music

N@5 0.0209 0.0218 0.0213 0.0223 (+2.29% ) 0.0721 0.0896 0.0863 0.1093 (+22.0%*) 0.1076 0.0973 0.1138 0.1211 (+6.41%*)
N@10 0.0471 0.0501 0.0513 0.0550 (+7.21%*) 0.0845 0.1110 0.1024 0.1334 (+20.2%*) 0.1312 0.1195 0.1337 0.1453 (+8.68%*)
N@20 0.0743 0.0766 0.0786 0.0841 (+7.00%*) 0.1022 0.1311 0.1192 0.1563 (+19.2%*) 0.1514 0.1405 0.1550 0.1676 (+8.13%*)

Amazon-
Grocery

N@5 0.0171 0.0203 0.0204 0.0232 (+13.7%*) 0.0274 0.0319 0.0294 0.0415 (+30.1%*) 0.0441 0.0340 0.0439 0.0507 (+15.0%*)
N@10 0.0290 0.0327 0.0323 0.0342 (+4.59% ) 0.0354 0.0398 0.0378 0.0524 (+31.7%*) 0.0545 0.0448 0.0546 0.0631 (+15.6%*)
N@20 0.0432 0.0468 0.0451 0.0485 (+3.63% ) 0.0455 0.0501 0.0456 0.0657 (+31.1%*) 0.0664 0.0568 0.0672 0.0757 (+12.6%*)

Amazon-Books
N@5 0.0606 0.0732 0.0756 0.0881 (+16.5%*) 0.0443 0.0510 0.0343 0.0711 (+39.4%*) 0.0771 0.0686 0.0668 0.0927 (+20.2%*)
N@10 0.0681 0.0817 0.0837 0.0961 (+14.8%*) 0.0492 0.0574 0.0390 0.0792 (+38.0%*) 0.0854 0.0764 0.0744 0.1010 (+18.3%*)
N@20 0.0824 0.0979 0.1021 0.1127 (+10.4%*) 0.0601 0.0702 0.0483 0.0949 (+35.2%*) 0.1020 0.0911 0.0893 0.1175 (+15.2%*)

Yelp2021
N@5 0.0277 0.0356 0.0298 0.0376 (+5.62% ) 0.0241 0.0240 0.0191 0.0355 (+47.3%*) 0.0387 0.0287 0.0354 0.0437 (+12.9%*)
N@10 0.0342 0.0430 0.0371 0.0457 (+6.28%*) 0.0290 0.0294 0.0232 0.0427 (+45.2%*) 0.0457 0.0350 0.0422 0.0516 (+12.9%*)
N@20 0.0451 0.0552 0.0481 0.0582 (+5.43% ) 0.0370 0.0378 0.0298 0.0546 (+44.4%*) 0.0574 0.0450 0.0532 0.0641 (+11.7%*)

complexity of computing the score for pair pair has the same order
as the embedding dimension 𝐷 , and so we have that computing
the scores for all relevant pairs has complexity O(𝑁𝐷). Once these
scores are obtained, Equations 6 and 7 add an additional cost of
𝑛𝑢 + 𝑝𝑢 per user. The rest of the computation is spent on selecting
the positive and negative pairs via these equations which adds 𝑁
comparisons between the pair score and the max/min. Therefore,
the total complexity of pair mining is:

𝑂 (𝑁𝐷 +
∑
𝑢∈𝑈

(𝑛𝑢 + 𝑝𝑢 ) + 𝑁 ) = 𝑂 (𝑁 (𝐷 + 2)) (11)

The loss computation for each selected pair is constant, and there-
fore the extra amount of computations is bounded by 𝑁 . We get
that the total complexity is:

𝑂 (𝑁 (𝐷 + 2) + 𝑁 ) = 𝑂 (𝑁 (𝐷 + 3)) = 𝑂 (𝑁𝐷) (12)

The time complexity of MCL is the same as BPR, Triplet (see Ta-
ble 1), and SML while SRNS has higher complexity due to score
computation in the memory bank.

For space complexity, SML is the only method that requires
additional space to store user and item biases, while the other four
methods only need the space for the embeddings. However, the
addition in space is constant for SML so the space complexity for
all five methods is the same. The complexity analysis shows that
our loss has the same complexity in time and space as BPR, Triplet,
and SML while SRNS has higher time complexity.

5 EXPERIMENTS
We evaluate our method on public datasets and compare against
leading CF baselines. We use the Amazon-Digital-Music, Amazon-
Grocery, Amazon-Books, [20] and Yelp2021 datasets. The statistics
for these datasets are summarized in Table 2. The datasets vary in
size and density, providing a comprehensive view of model perfor-
mance. Following previous work [16, 18, 40], we randomly select
80% of the interactions for training and 10% for validation and
10% for testing. To evaluate top-k ranking performance for each
model, we adopt two widely used metrics: Recall and Normalized
Discounted Cumulative Gain (NDCG) [18, 34, 37].

Baselines We use CML [10], NeuMF [8], and LightGCN [7]
as base models since they represent the leading models in metric
learning, neural network and graph convolutional CF literature.
We apply state-of-the-art loss functions and our proposed MCL
approach to the base models to measure the relative improvement.
For the loss functions we leverage:

• SML [16] introduces an adaptive bias for each user to allow
different base preferences, and a symmetric item-centric
metric to push away negative items from positive while
maintaining close distance between user and positive item.

• SRNS [4] reduces the false negative instances during the
sampling process by favoring high-variance negative items
in the memory.

In addition to the loss functions, we also compare our results with
other leading CF models:
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Table 4: Recall (top) and NDCG (bottom) results for all datasets with VAE-CF, BPRMF, LRML, NGCF, and IMP-GCN as base-
lines. The best-performingmodel for each dataset andmetric is highlighted in bold and next best model is underlined. Models
trained with our loss are indicated with "+MCL" and relative improvements are shown in brackets. Asterisks denote statisti-
cally significant improvements according to the Wilcoxon signed-rank test.

Datasets VAE-CF BPRMF LRML NGCF IMP-GCN LightGCN+MCL

Amazon-
Digital-Music

R@5 0.1211 0.1181 0.0496 0.1144 0.1493 0.1612 (+7.97%*)
R@10 0.1730 0.1751 0.0766 0.1689 0.2052 0.2308 (+12.5%*)
R@20 0.2469 0.2431 0.1163 0.2450 0.2773 0.3082 (+11.1%*)

Amazon-
Grocery

R@5 0.0483 0.0451 0.0212 0.0320 0.0602 0.0699 (+16.1%*)
R@10 0.0774 0.0743 0.0357 0.0576 0.0897 0.1051 (+17.2%*)
R@20 0.1166 0.1075 0.0573 0.0928 0.1278 0.1492 (+16.7%*)

Amazon-Books
R@5 0.0371 0.0349 0.0344 0.0452 0.0565 0.0634 (+12.2%*)
R@10 0.0564 0.0589 0.0561 0.0728 0.0911 0.1000 (+9.77%*)
R@20 0.0825 0.0941 0.0868 0.1135 0.1413 0.1495 (+5.80% )

Yelp2021
R@5 0.0204 0.0241 0.0185 0.0280 0.0332 0.0361 (+8.73%*)
R@10 0.0331 0.0423 0.0317 0.0479 0.0568 0.0607 (+6.87%*)
R@20 0.0528 0.0703 0.0523 0.0785 0.0935 0.0976 (+4.39% )

Datasets VAE-CF BPRMF LRML NGCF IMP-GCN LightGCN+MCL

Amazon-
Digital-Music

N@5 0.0912 0.0919 0.0385 0.0851 0.1096 0.1209 (+10.3%*)
N@10 0.1105 0.1120 0.0479 0.1044 0.1296 0.1468 (+13.3%*)
N@20 0.1317 0.1316 0.0593 0.1259 0.1502 0.1684 (+12.1%*)

Amazon-
Grocery

N@5 0.0364 0.0331 0.0153 0.0232 0.0445 0.0507 (+13.9%*)
N@10 0.0464 0.0433 0.0206 0.0323 0.0549 0.0631 (+14.9%*)
N@20 0.0576 0.0529 0.0268 0.0421 0.0657 0.0757 (+15.2%*)

Amazon-Books
N@5 0.0619 0.0388 0.0525 0.0654 0.0811 0.0927 (+14.3%*)
N@10 0.0632 0.0524 0.0575 0.0722 0.0897 0.1010 (+12.6%*)
N@20 0.0711 0.0683 0.0679 0.0864 0.1093 0.1175 (+7.50%*)

Yelp2021
N@5 0.0260 0.0234 0.0237 0.0342 0.0396 0.0437 (+10.4%*)
N@10 0.0296 0.0326 0.0274 0.0407 0.0474 0.0516 (+8.86%*)
N@20 0.0362 0.0437 0.0344 0.0511 0.0594 0.0641 (+7.91%*)

• VAE-CF [17] is a Bayesian collaborative filtering approach
based on variational autoencoders.

• BPR [26] proposes to use BPR loss with matrix factorization
(MF).

• LRML [33] employs an augmented memory module to con-
struct latent relationships instead of simple push-pull mech-
anisms for deep metric learning.

• NGCF [37] applies graph convolutional networks to user-
item bipartile graph by performing embedding propagation.

• IMP-GCN [18] divides the user-item graph into subgraphs
and uses higher-order graph convolution inside subgraphs.

Implementation Details For all models, we set the embedding
dimension to 64 and number of negative pairs for each positive pair
to 10 to make the comparison fair. We set other hyper-parameters
for each baseline using cross validation around the best settings
suggested by the respective authors. For temperature parameters,
we select 𝛼 from {1, 54 ,

5
3 ,

5
2 , 5} and 𝛽 from {1, 2, 3, 4, 5}. The margin

parameters, 𝜆𝑝 and 𝜆𝑛 are chosen from {0, 0.5, 1,..., 9.5, 10} and
{-3, -2.5,..., 2.5, 3} respectively. The mining margin 𝜖 is fixed to 1.
All hyper-parameters for the Mixed-Centric loss are set through
cross validation and we discuss their effects in the ablation analysis.
We set the batch size to 1K users for each dataset and use the
Adam optimizer, all other hyper-parameters for CML, NeuMF, and
LightGCN are set to defaults. Experiments are conducted with

PyTorch on a server with 40 Intel Xeon CPU@2.20GHz cores and
Nvidia Titan V GPU.

5.1 Performance Comparison With Other
Losses

The results for the four datasets with different loss functions are
shown in Table 3. We denote models trained with SML, SRNS, and
our loss as ” +SML”, ” +SRNS”, and ” +MCL” respectively with
CML, NeuMF, and LightGCN as the base models. We can see that
adding MCL significantly improves performance for all models on
each of the four datasets and models with MCL achieves highest
performance compared to the same model with SML and SRNS,
demonstrating the effectiveness of MCL loss when combined with
different base models. Among the baselines, we found that when
using NeuMF as the base model, SML consistently performs better
than SRNS on all datasets while SRNS performs better when using
CML and LightGCN as base models.

5.2 Performance Comparison With Other
Methods

Table 4 shows the performance comparison results with other state-
of-the-art collaborative filtering approaches. Among the baseline
models, the performance of VAE-CF is on par with NGCF and
both perform better than LRML and BPRMF. IMP-GCN has the
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(a) User and item embeddings projected to 1D, the standard deviation (𝜎) is shown on the left.

(b) User and item embeddings projected to 2D.

Figure 3: Visualization of the learned embeddings for three losses. The visualizations are obtained by training the same Light-
GCN model architecture on the Amazon-Digital-Music dataset and then projecting the learned embeddings to 1D (Figure 3a)
and 2D (Figure 3b) spaces with t-SNE. Recall@20 for the three losses are as follows Triplet:0.2656, BPR:0.2802, and MCL:0.3082.

strongest performance amongst the baselines on all four datasets.
Our proposed loss added to the LightGCNmodel (LightGCN +MCL)
achieves new state-of-the-art results on all datasets and consistently
outperforms all other approaches. In particular, when compared to
the strongest baseline IMP-GCN in terms of NDCG@20, our model
reaches relative improvements of 12.1%, 15.2%, 7.5%, and 7.91%
on the Amazon-Digital-Music, Amazon-Grocery, Amazon-Books
and Yelp2021 datasets respectively. These results demonstrate that
by leveraging information more effectively in the preference data
and placing additional constraints on the embedding space, we
can achieve significant gains in performance without changing the
underlying model architecture.

5.3 Embedding Visualization
An important factor for the high performance of our loss is the
batch centric component that adds global information from other
users within the batch. We discussed that this component acts
as a regularizer and encourages items of the same type (positive
or negative) to be within comparable distance for every user. To
further evaluate the effect that MCL learning has on the embedding
space we visualize the learned embeddings by projecting them to
one-dimensional (1D) and two-dimensional (2D) spaces with t-SNE.
We use the same LightGCN model architecture and train it with
the Triplet, BPR, and MCL losses on the Amazon-Digital-Music
dataset, plots of the projected embeddings are shown in Figure 3.
We recognize that aggressive dimensionality reduction can skew the
embedding space, and have empirically verified that the projected
representations approximate the user-item distances reasonably
well.

Figure 3a shows the distributions of the 1D projected user and
item embeddings and the corresponding standard deviations. Both
user and item distributions for the Triplet loss are highly peaked
with a small standard deviation. This effect can be further observed

in the 2D projection plot in Figure 3b. Triplet loss projection has
a radial shape with the majority of users in the middle, and items
grouped in a circular region around users. Both plots exemplify
one of the major drawbacks of the Triplet loss: the weight is not
distributed based on the difficulty of each pair. So easy positives
get a lot of weight, pulling users and positive items together to
the center and forming large clusters. Since users that are in close
proximity get similar recommendations, large user clusters can have
undesirable effects where it is difficult for the model to identify
specific users and provide truly personalized recommendations.

The BPR loss is able to correct some of these drawbacks by using
a dynamic weighting scheme that depends on the relative difference
between pair distances. We see that BPR’s 1D projection has more
than 10x larger standard deviation than the Triplet loss, and the 2D
projection shows clear user sub-clusters that are spread throughout
the embedding space. However, there is still a large cluster of users
and items in the center. That cluster contains over 30% of all users
within close proximity to each other and can lead to sub-optimal
recommendations. Our MCL loss further increases the standard
deviation by over 50% relative to BPR, and from the 2D projection
we see that both users and items are now separated into much
tighter clusters that span the whole range of the embedding space.
This in turn leads to a significant accuracy improvement where
MCL boosts Recall@20 by 16% and 10% over Triplet and BPR losses
respectively.

5.4 Ablation Analysis
Number of Negatives Number of negative samples plays an im-
portant role in MCL particularly for the pair mining procedure.
Distance to the furthest positive item can be computed exactly for
each user, but distance to the closest negative item is estimated
from the negative samples. Consequently, larger sample set leads
to a better distance approximation which in turn provides a better
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Table 5: Recall@20 on Amazon-Digital-Music and Amazon-
Books datasets as the number of negatives (n) is varied from
1 to 20.

Dataset Model n=1 n=2 n=3 n=5 n=10 n=20

Amazon-
Digital-Music

LightGCN 0.2880 0.2831 0.2820 0.2812 0.2801 0.2771
LightGCN+MCL 0.2962 0.3038 0.3056 0.3071 0.3082 0.3093

Amazon-
Books

LightGCN 0.1411 0.1386 0.1375 0.1362 0.1348 0.1335
LightGCN+MCL 0.1233 0.1365 0.1425 0.1451 0.1495 0.1532

Table 6: Recall@20 on Amazon-Digital-Music and Amazon-
Books datasets as embedding dimension 𝑑 is varied from 16
to 64.

Model Amazon-Digital-Music Amazon-Books
d=64 d=32 d=16 d=64 d=32 d=16

LightGCN 0.2801 0.2701 0.2407 0.1348 0.1088 0.0841
LightGCN+MCL 0.3082 0.2991 0.2577 0.1495 0.1256 0.097

Rel. Improv. 10.03% 10.74% 7.06% 10.91% 15.44% 15.34%

estimate of the hard positive items that the model should focus
on (see Figure 1). However, the computation in the pair mining
procedure scales linearly with the number of samples so there is
a direct trade-off between estimate accuracy and computational
complexity. To evaluate the effect of the negative sample set size,
we conduct an ablation study and vary the number of negatives
from 1 to 20. We compare performance between LightGCN and
LightGCN+MCL where both models get the same set of negative
samples at each iteration, results are shown in Table 5. We see
that LightGCN+MCL steadily improves performance with larger
sample sizes while LightGCN gradually degrades. LightGCN uses
the BPR loss so with more negative samples the weight on each
positive pair increases. This can amplify the clustering effect and
pull positive items closer towards the users making the embedding
distribution narrower. We have empirically verified this with the
t-SNE analysis. In MCL, regularization from same-type and batch
centric components prevent the model from over fitting on easy
positive/negative items, and LightGCN+MCL benefits from more
accurate mining and better estimate of the batch centric component.
Even with only a few negatives such as 𝑛 = 3, LightGCN+MCL is
already able to outperform the LightGCN counterpart.

Embedding Dimension Embedding dimension is one of the
most important parameters in latent CF since it directly controls
the representational power of the model. To assess the effect of this
parameter, we ablate embedding dimension by varying it from 16 to
64. We again use the strongest LightGCN baseline and compare it
with our LightGCN+MCL version. The results are shown in Table 6,
and we see that LightGCN+MCL outperforms LightGCN on all set-
tings but the performance for both models drops as dimensionality
is reduced. We can potentially attribute this improvement to the
more spread out embedding distribution under MCL (as shown in
Figure 3b). This allows the model to take a better advantage of the
embedding space and counteract the reduction in dimensionality.
Notably, LightGCN+MCL at 𝑑 = 32 on Amazon-Digital-Music has
higher performance than LightGCN at 𝑑 = 64, demonstrating the
significance of improvement.

Figure 4: LightGCN+MCL recall@20 hyper-parameter
search results for Amazon-Digital-Music and Amazon-
Books datasets.

OtherHyper-Parameters To evaluate the effect of other hyper-
parameters on our loss, we test different settings with 𝛽 = 5, 𝛼 ∈
{1, 54 ,

5
3 ,

5
2 , 5} and 𝛼 = 1, 𝛽 ∈ {1, 2, 3, 4, 5} while 𝜆𝑝 and 𝜆𝑛 are fixed

to 0. Then, we test the 𝜆𝑝 ∈ {2, 4, 6, 8, 10} and 𝜆𝑛 ∈ {−3,−1, 0, 1, 3}
while fixing 𝛼 and 𝛽 to the best settings from the previous test. The
results are shown in Figure 4 for the LightGCN+MCL model trained
on Amazon-Digital-Music and Amazon-Books datasets. We have
two main observations:

• For both datasets, the peak performance occurs when the ratio
𝛼/𝛽 is 4 (𝛼 = 5

4 , 𝛽 = 5 for Amazon-Digital-Music; 𝛼 = 1, 𝛽 = 4 for
Amazon-Books). Since the ratio of 𝛼 and 𝛽 determines the weight
split between positive and negative pairs, the result indicates that
the positive pairs should receive four times more weights than
the negative pairs to yield the best result.

• For both datasets, the optimal value for 𝜆𝑝 lies in [6, 8] while for
𝜆𝑛 is in [-1, 0]. This difference is due to the Euclidean distance
separation between positive and negative pairs. Since 𝐸𝑢 𝑗 ≪ 𝐸𝑢𝑘 ,
we need a large 𝜆𝑝 and a small 𝜆𝑛 to make the magnitudes of
𝐸𝑢 𝑗 +𝜆𝑝 and 𝐸𝑢𝑘 +𝜆𝑛 similar in the user-item centric components
𝑤1 (𝑢, 𝑗) and 𝑤1 (𝑢, 𝑘) (see Equations 9 and 10). Increasing 𝜆𝑛
hurts the model significantly as𝑤1 (𝑢, 𝑘) grows exponentially.

6 CONCLUSION
We present a new learning framework for implicit CF that consists
of sample mining and MCL loss. We additionally propose a weight-
based analysis of pairwise losses and show that weighting in our
loss consists of four components that richly describe the preference
information available in each batch. We implement MCL with three
leading CF model and show significant improvement with each
model. In particular, when MCL is combined with the LightGCN ar-
chitecture we archive new state-of-the-art on all datasets. Analysis
of learned embedding space demonstrates that MCL achieves better
user-item separation and is robust to different hyper-parameters.
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